Microbubble-mediated ultrasonic brain therapy and treatment monitoring via sparse hemispherical transducer arrays

Ryan M. Jones, PhD

Research Associate, Physical Sciences Platform

Sunnybrook Research Institute

Motivation

 Focused ultrasound (FUS) + microbubbles (MBs): blood-brain barrier (BBB) opening: clinical¹⁻⁴

Existing FUS arrays: 30 cm diam., 1024-elem.
 hemispherical; limited spatial MB information

 Multi-element sensor arrays + beamforming: spatial & temporal source field mapping^{5,6}

 Large apertures: resolution, sensitivity, imaging volume; sparsity reduces complexity & cost

[1] Mainprize *et al, Sci Rep* (2019)
[2] Lipsman *et al, Nat Comm* (2018)
[3] Abrahao *et al, Nat Comm* (2019)

[4] Carpentier *et al, STM* (2016)
[5] Sato *et al, JASA* (1980)
[6] Salgaonkar *et al, JASA* (2009)

Array Design Simulations

- Multilayered Ray-Acoustics¹
- Delay, Sum, & Integrate Beamformer²
- Simulation Variables
- Source Location/Frequency
- Receiver Number/Layout/SNR
- Skull Morphology (3 CT datasets)

(Bottom) -6 dB source field intensity isosurfaces $N_{\rm RCV} = 128, f = 500 \, kHz$ [1] Jones *et al, PMB* (2013) [2] Norton & Won, *IEEE TGRS* (2000)

First Generation Dual-Mode Brain Array

- 128 x piezo-ceramic disks¹
 - *f*_{Rx} = 612 kHz
 - sparsity_{area} = 1.8%
- Integrated w/ transmit array²
 - *f*_{Tx} = 306 kHz
- Simulation-optimized layout
 - 5,000 trial configurations

[1] O'Reilly et al, IEEE TBME (2014)

[2] Song et al, IEEE TBME (2010)

Array Characterization: Sensitivity & Resolution

[1] O'Reilly et al, IEEE TBME (2014)

1

10

Transcranial Imaging In Vivo: CT Corrections

• CT corrs: reduced positional error (deviation from source corrs) from 2.3 \pm 2.0 mm (no corrs) to 0.8 \pm 0.5 mm [12 sonications, 3 rats]

Multi-Frequency Dual-Mode Brain Arrays

- 128 & 256 Module Arrays^{1,2}
- 3 x PZT4 tubes; lateral mode
- $f_{Tx/Rx} = 306/612/1224 \text{ kHz}$
- OD = 2.0 λ; ID = 1.4 λ
- sparsity_{area} = 6.4/1.6/0.4%
- simulation-optimized layout³

[1] Deng et al, PMB (2016)

[2] Jones et al, Theranostics (2018)

[3] Jones et al, PMB (2013)

3D Subharmonic Imaging: Exposure Calibration

Calibration: single-point pressure ramp → subharmonic threshold (p_{sub})
 Volumetric: fixed pressure (50% p_{sub}) multi-point (electronic steering)

3D Subharmonic Imaging Calibration: Example

(Top Right) Linear contours: 10% intervals, target: + symbols

Jones et al, Theranostics (2018)

Treatment Group: MRI Example

- Four unilateral grids (6x6, 1mm spacing, 50% p_{sub}^{1}) per animal (n = 5)
- •1w: MRI follow-up, sacrificed (H&E)
- BBB opening (T₁w), edema (T₂w), extravasations (T₂*w): Od & 1w

Treatment Group: Summary

• Worst case: small region (< 50 μ m) of RBCs in perivascular space of single focal spot 1w post-FUS on H&E (arrow)

	Time Point	CE-T ₁ w Hyper	T ₂ w Hyper	T ₂ *w Hypo	H&E Extravs
All Focal Spots	Immediate	336 (46.6%)	12 (1.6%)	0	N/A
(n = 720)	1 Week	0	0	0	1 (0.1%)
Calibration Points	Immediate	20 (100%)	0	0	N/A
(n = 20)	1 Week	0	0	0	0

Jones et al, Theranostics (2018)

Super Resolution Imaging

 Position of sources can be estimated beyond the diffraction limit¹

- Re-plot images of single bubble at higher resolution (PALM²)
 - Estimate source position
 - Re-plot with widths determined by uncertainties on fit

Transcranial Super Resolution Imaging

Super Resolution Imaging In Vivo

O'Reilly & Hynynen, IEEE IUS (2014)

Ultrasound Registration of CT Data

- Clinical FUS treatments register pre-op CT data to intra-op MRI
 - aberration correction
 - "no-pass regions" (sinuses, intra-cranial calcifications...)
- US-based registration; for interventions not requiring MRI
 - 128 elements (PZT, 11 MHz)
 - sparsity_{area} = 0.4%
 - 5 ex-vivo human skullcaps

O'Reilly et al, Med Phys (2016)

Ultrasound Registration of CT Data

[1] Ray-Acoustic Model (230 kHz InSightec System)

Summary

Sparse Hemispherical Transmit/Receive Ultrasound Arrays

- Numerical simulations to optimize array layouts
- 3D microbubble mapping in vivo, ex-vivo human skullcaps
- Subharmonic imaging calibration of BBB opening
- Trans-human skull acoustic imaging beyond diffraction limit
- Skull CT array registration

Future Work – Clinical Translation

- Develop next generation ultrasound brain therapy systems
- Combined system: large animal testing w/ ex-vivo human skullcaps

Acknowledgements

FUS Lab

- K. Hynynen (PI)
 M. O'Reilly
 K. Leung
 S. Rideout-Gros
 V. Chan
 D. McMahon
 J. Sun
 M. Kazem
 R. Reyes
 S. Yang
- Y. Huang

NIH

THE W. GARFIELD WESTON

National Institute of Biomedical Imaging and Bioengineering RO1-EB003268

Canada Research Chairs Chaires de recherche du Canada

