

Towards Efficient Methods FOR Transcranial Ultrasound Monitoring & Control

Scott Schoen Jr 13 July 2020

Need to Monitor & Control Cavitation in Real-Time

- FUS & microbubbles localize forces
- Stable Cavitation
 - Correlated with reversible BBB opening^{1,2}
- Inertial Cavitation
 - Associated with ablation³

Tec

¹ Arvanitis et al. *PLoS One* **7**(9) (2012)

- ² Arvanitis et al. Phys. Med. Biol. 58(14) (2013)
- ² ³Xu et al., *IEEE Trans. Ferroelectr. Freq. Control* **51**(6) (2004)

Monitor Passive Acoustic Mapping (PAM)

Passive Acoustic Mapping (PAM)

Receiver Array

Pro: ASA is Frequency Selective

Pro: ASA is Frequency Selective

Pro: ASA is Sensitive

Con: ASA Does Account for Aberration

Receiver Array

ASA-PAM Benefits

- Fast Milliseconds vs Minutes
- Sensitive Robust to Noise
- Frequency-Selective Identify Bubbles
- Assumes Uniform Medium

Challenge: Adapt ASA for Heterogeneity

<u>HASA FOR Passive Acoustic Mapping</u> Heterogeneous

Medium Properties

HASA Improves Accuracy

Receiver Vessel Region 2 cm

Sound Speed [m/s] 1500 2100

HASA Improves Accuracy

Sound Speed [m/s] 1500 2100

HASA Improves Accuracy

Control PAM-Based Cavitation Control

Harmonic Level Quantifies Cavitation

- Harmonics and Ultraharmoics indicate Stable Cavitation
- Broadband Emissions indicate Inertial Cavitation

Frequency-Selective PAMs Visualize Cavitation

• Form PAMs at Harmonic and Broadband frequencies

Tec

Idea: Use Harmonic Levels to Adjust Excitation

Tech

Levels are Function of Pressure

20

Sign of Step: Relative to Target

How Big of a Step?

Controller Parameters Chosen

Smooth

- Third harmonic (H3) for target (direction)
- Third ultraharmonic (U3) for model (size)
- Broadband (BB) for safety
- Two control law shapes:

Controller Performance

Controller Performance – Proximity Ratio

PAM Allows Spatial Specificity

Emissions Associated with K^{trans} Increase

Conclusions

• ASA can Image Cavitation Passively

- Can form frequency-selective maps in real time
- Type and location of activity can be discerned
- Fast correction developed to deal with heterogeneity
- ASA can Enable Cavitation Control
 - Frequency selectivity allows characterization
 - Mapping enables spatial control
 - Fast enough for real-time feedback

Thanks!

Ultrasound Biophysics Lab

PI: Prof. Costas D Arvanitis

Grad Students Ashley Alva Yutong Guo Chulyong Kim Henry Lee Scott Schoen Jr

Alumni Arpit Patel Dr Anastasia Velalopoulou Zhigen Zhao