

WINSHIP CANCER INSTITUTE

A Cancer Center Designated by the National Cancer Institute

Treatment Planning Techniques in PBS

Mingyao Zhu, PhD Emory University School of Medicine Emory Proton Therapy Center July 12, 2020

EMORY PROTON THERAPY CENTER WINSHIP CANCER INSTITUTE

2020 Joint AAPM | COMP Virtual Meeting

Disclosure

• None

Outline

- Uncertainties in PBS
 - Range
 - Setup
 - RBE
 - Motion
 - Anatomy
- Mitigation techniques in treatment planning
 - bsPTV (margin)
 - Beam selection
 - Robust optimization
 - Adaptive RT
 - Re-painting

EMORY WINSHIP CANCER INSTITUTE – RBE/LET optimization

Introduction

• Uncertainties in PT:

Range Uncertainty

- CT HU to stopping power ratio (SPR)
 - Both are dominated by electron density ratio
 - But elemental composition matters
 - Various among facilities

EMORY

WINSHIP CANCER

- Typically 2.5-3.5% with additional 1-3mm

3.5 mm at a range of 10 cm

7 mm at a range of 20 cm

► Depends on depth !

Paganetti, PMB 57(11), 201

Range Uncertainty

Solution—Margin

- PTV concept: accounts for setup and all geometric uncertainties to ensure dosimetric coverage of CTV
- PTV for proton planning needs to account for range uncertainties too.
- Beam specific PTV (bsPTV) expansion

Photon PTV margin

Setup up uncertainties in the direction parallel to beam's central axis has minimal effect (inv. Sq.) and can't be accounted for by margin.

EMORY WINSHIP CANCER INSTITUTE

Photon PTV margin

In the beam's eye view, only "lateral" margin is needed to account for setup up uncertainties in the direction perpendicular to beam's central axis

EMORY WINSHIP CANCER INSTITUTE A Care The The Institute

Photon PTV margin

Using multiple beams requires margin in multiple directions

Proton PTV margin

In the beam's eye view, "lateral" margin is needed to account for setup up uncertainties in the direction perpendicular to beam's central axis

EMORY WINSHIP CANCER INSTITUTE

Proton PTV margin

Along the beam's central axis, distal and proximal margin are needed to account for Range Uncertainties!

EMORY WINSHIP CANCER INSTITUTE

Beam-specific proton PTV

- Deeper target \rightarrow larger margin
- Distal margin > proximal margin
- Beam angle dependent

Figure 1 Figures A and B illustrate distal and proximal PTV margins for an identical target located at different depth. Margins are also a function of beam direction (*C*). The concept of a PTV that is common for all beams does not fulfill the PTV requirement for proton planning (D). (Color version of figure is available online.)

EMORY

WINSHIP CANCER INSTITUTE

()

Langen and Zhu, Semin. Rad. Onc. 2018

Patient Setup

- Lateral margin is used to account for motion perpendicular to the beam direction;
- However, lateral motion also affect proton dose deposition along the beam direction

EMORY

WINSHIP Cancer

Langen and Zhu, Semin. Rad. Onc. 2018

Beam specific PTV

- bsPTV: based on water-equivalent thickness (WET) ray-tracing accounting for
 - Range uncertainties calculated at distal and proximal surface;
 - Patient setup error;
 - Organ motion;
- bsPTV properties:
 - Beam angle dependent;
 - Affected by surrounding tissue density
 - Shape can be unintuitive
 - Can be used for planning and evaluation

Beam specific PTV

3.5% range uncertainty

3.5% range uncertainty + 3mm isocenter shift

- Larger distance in lower density tissue;
- Larger margin with higher density tissue

EMORY

WINSHIP CANCER

()

- Lateral shift changes distal/proximal margin
- Ideal PTV shape may be very un-intuitive

Beam specific PTV for lung tumor

EMORY

WINSHIP Cancer

X

Beam specific PTV calculated for each beam angle based on CTV

- Range uncertainty alone
- Range + Setup uncertainty

Setup error → much bigger margin

Introduction

• Uncertainties in PT:

IMPT—Plan robustness

- BS-PTV does not guarantee robustness for inversely optimized IMPT plans;
- Plan robustness is a plan quality metric and needs to be evaluated;
- Ask: what happens to dose distribution if patient shifts and if range is incorrect?

EMORY

WINSHIP CANCER

INSTITUTE

Two basic planning techniques: SFO & MFO

SFO (Single field optimization) Fields are optimized independently of each other or: Right hand does not know what the left is doing

Two basic planning techniques: SFO & MFO

MFO (Multiple field optimization) Fields are optimized in unison, they are a team individual fields can have non-uniform dose

Split targets—by design MFO

EMORY WINSHIP CANCER INSTITUTE A Conce Control Designated by A Conce Control Designated by

3-field prostate+LN

Zhu, et al, ARO, in press

Split targets—by design MFO

5-field HN plan

Katja Langen

SFO vs. MFO

- In general:
 - SFO is more robust than MFO;
 - MFO can spare normal tissue better for more complicated target shapes
- Use SFO if possible
 - For convex shaped target: SFO is usually good enough
- Use MFO only when needed
 - Concave shaped target, e.g. bi-lat HN
 - OAR surrounded by target,
 - If split the field-target

SFO with uncertainty

MFO with uncertainty

Dose gradient within target!

Robust Optimization

• Include robustness as an objective in optimization

Chen et al., PMB, 57 (2012), 591

Introduction

• Uncertainties in PT:

Proton RBE

 \bigtriangledown

CANCER

INSTITUTE

Protons are NOT high LET particles

Proton RBE

@ 250 MeV: 3 MeV cm²/g

3 MeV/cm= 0.3 keV/µm

@ 10 MeV: 5 keV/µm

@ 1 MeV: 20 keV/µm

EMORY WINSHIP CANCER INSTITUTE

RBE uncertainty—distal edge

ICRU Report 78: use of generic RBE value of 1.1 is recommended

RBE uncertainty—distal edge

Paganetti, PMB, 57 (2012) R99

EMORY WINSHIP CANCER

- Use a generic RBE value adds uncertainty to the distal edge RBE dose;
- Biological dose is deeper/higher than physical distal edge dose;
- Real RBE value depends on multiple factors
 - Treatment technique
 - Dose
 - Cell/tissue type
 - End point
 - Radiosensitivity
 - Etc.

RBE uncertainty management

- Use multiple beams
 - Spread uncertainty geometrically
 - Avoid stopping before critical OARs
- Robust optimize and evaluate beam dose
- Variable RBE in plan optimization
 - Not currently available
 - LET_d distribution

The current clinical practice of using a constant RBE for protons should generally be maintained but specific clinical scenarios warrant a change in current practice.

Report of AAPM TG-256 (2019)

Katja Langen

Introduction

• Uncertainties in PT:

- If tumor and beam move independently, spot positions differ from planned positions;
- Similar to interplay between IMRT/VMAT and tumor motion
- Can leads to hot or cold spots in target
- Spot scanning is more sensitive to intra-fraction target motion since it is more dynamic

Grassberger et al, IJROBP (86) 2, 380, 2013

Open symbols: n=1 Solid symbols: n=4

Grassberger et al, IJROBP (86) 2, 380, 2013

- Motion during treatment is important for spot scanning
- Possible approaches:
 - Restrict motion
 - Beam gating
 - Re-scan or re-painting
 - Use big spot
- Be aware, but don't be discouraged!

Introduction

• Uncertainties in PT:

Proton is sensitive to anatomy changes

Proton is sensitive to anatomy changes

Proton dose is sensitive to anatomy changes

Proton dose is sensitive to anatomy changes

X

Lung IMPT: anatomy changes dramatically

Original Proton Plan

EMORY WINSHIP CANCER

INSTITUTE

Dose recalculated on the new anatomy

Bucci et al. ASTRO Abstract, 2007

Pelvic IMPT

Head and neck IMPT

Patient anatomy change

- Undesired dosimetric consequence
- Unpredictable dosimetric consequence
- Mitigation strategy:
 - Adaptive RT: frequent re-scan and re-plan
 - Resource intensive
 - Suboptimal treatment

Introduction

• Uncertainties in PT:

EMORY WINSHIP CANCER INSTITUTE

Patient anatomy change

- Undesired dosimetric consequence
- Unpredictable dosimetric consequence
- Mitigation strategy:
 - Adaptive RT: frequent re-scan and re-plan
 - Resource intensive
 - Suboptimal treatment

Anatomical robust optimization

Anatomical robust optimization

Types of multiple CT Robust Optimization

mCT RO for Lung IMPT

Wang, et al., Radiother Oncol. (2018)

Lung IMPT: anatomy change dramatically

30% re-planning

Between PCT and ACT:

- Negligible variation of CTV volume
- Large difference of Range and SOBP

DVH comparison

Solid: P-PCT Dashed: M-PCT

Solid: A-ACT Dashed: M-ACT Dotted: P-ACT

Wang, et al., Radiother Oncol. (2018)

mCT RO for lung IMPT

- Using 2 patient scans: PCT and ACT
 - Include both CTs in optimization
- On PCT:
 - Similar coverage
 - Slightly higher lung dose
 - Similar robustness
 - No statistically difference in heart or spinal cord dose
- On ACT:
 - Reduced cold spot—improve tumor control
 - Could potentially reduce re-planning frequency

mCT RO for lung IMPT is feasible!

Yang, et al., Radiother Oncol. (2020)

40% re-planning

Between PCT and ACTs:

- Negligible variation of CTV volume
- Large difference of Range and SOBP

Yang, et al., Radiother Oncol. (2020)

EMORY WINSHIP CANCER INSTITUTE

Yang, et al., Radiother Oncol. (2020)

- Using 2 patient scans: PCT and ACT1
 - Include both CTs in optimization
- For patients with large anatomical changes
 - mCT plan provide more robust target coverage
 - Slightly sacrificed dose conformity

mCT RO for HN IMPT can reduce the need of adaptive planning!

van de Water, et al., Phys. Med. Biol. 63 025020 (2018)

EMORY WINSHIP CANCER INSTITUTE

van de Water, et al., Phys. Med. Biol. 63 025020 (2018)

van de Water, et al., Phys. Med. Biol. 63 025020 (2018)

van de Water, et al., Phys. Med. Biol. 63 025020 (2018)

mCT RO for sinonasal cancer

- Better target coverage than SFUD (+ margin);
- Lower OAR dose than SFUD (+ margin);
- Online adaptation is the best, but implementation is not realistic;
- mCT RO plans are anatomically robust under conditions of large cavity filling variation, therefore can be an alternative to the online adaptation;

mCT RO for Pelvic IMPT

Zhu, et al, ARO, in press

Bowel filling variation simulation

Native CT # and density

Purple: Override to Air

Pink: Override to Muscle

mCT RO for pelvic IMPT

• Patient position:

5 mm

- Range Uncertainty: 3.5%
- Image sets:
 3 CTs

EMORY

WINSHIP CANCER

INSTITUTE

Image sets

CT: CT1 [31 May 2017, 16:05:17 (hr:min:sec)]

- CT: CT1_MO_Bowel-to-Air [31 May 2017, 16:05:17 (hr:min:sec)]
- ✓ CT: CT1_MO_Bowel-to-Muscle [31 May 2017, 16:05:17 (hr:min:sec)]

mCT RO for Pelvic IMPT

- 15 patients with pelvic LN irradiation
- Similar target coverage and critical OAR doses
 - On pCT
 - On QACTs
- mCT RO further reduced hot-spot on normal tissue
 – On QACTs

Zhu, et al, ARO, in press

mCT RO Clinical implementation

- All prostate patients are planned with this method at MPTC;
- The frequency of re-scan reduced substantially:
 - From weekly scans to 2 scans through out the treatment course;
- Haven't observe concerning hot spots on the re-scan CTs so far;
- This method can be used for other disease sites
 - GYN
 - Bladder
 - Anal/rectal
 - Head and neck

– etc...

Summary

• Uncertainties in PT:

EMORY WINSHIP CANCER INSTITUTE

Questions?

