

Delivering a conformable dose distribution for advanced stages of cervical cancer using a hybrid gynecological applicator

Peter Morssink, Senior Marketing Manager Brachytherapy

- Early LDR Gyn case with Radium in the 1920s
- First HDR in the 1980s
- First CT/MR applicator 1998
- Now MR based, fused with CT/PET volume implants

Embrace clinical data and resulting recommendations

Tanderup et al. Radiother Oncol. 2016 Sep;120(3):441-446.

Results of EMBRACE Study reflected in ICRU

- Established dose response curve
- Planning aim > 90 Gy
- Dose < 85 Gy results in suboptimal local control

EMBRACE II

• Guide for the future of IGBAT

Venezia in clinical setting

Elekta Ir-192 User/Venezia¹

Dose/Volume Response curve EMBRACE²

10 patients between FIGO IIB-FIGO IVB¹

Venezia consistently met ICRU guidelines across all stages

Potentially better clinical outcome

Elekta

[1] Walter et al. Combined intracavitary and interstitial brachytherapy for cervical cancer using the novel hybrid applicator Venezia: Clinical feasibility and initial results. 2018 Brachytherapy 17:775-81.

[2] Tanderup et al. Effect of tumor dose, volume and overall treatment time on local control after radiochemotherapy including MRI guided brachytherapy of locally advanced cervical cancer. Radiother Oncol. 2016;120(3):441–46.

Transition from LDR to HDR

- Optimization of dwell times
- Shorter treatment times

Transition from x-ray to MR

- Visualizing the applicator
- Visualizing the soft tissues and applicator

Transition from point to volume optimization

• Adjust dose to tumor volume based upon soft tissue imaging

How the use of MR changed applicator design

Changes in materials—from metal to MR safe materials

- MR safe—PPSU materials
- Difference applicator strength

How the use of MR changed applicator design

Changes in materials—from metal to MR safe materials

- Different ways of fixating parts
- Requires physician training / different markers
- Designs evolved to more user-friendly designs

How the use of MR changed applicator design

Impact on treatment planning

- Image fusion—CT and MR
- Applicator modeling

The evolution of hybrid applicators

• From customer designed applicators to latest commercial design

The evolution of hybrid applicators

Expanding clinical capabilities

Reach the cervix, parametrium and vaginal extensions with one applicator

Deliver optimal dose to target, sparing OAR

Elekta

Use for various patient groups (stage IB, IIA/B, IIIA/B and IVA)

Fallopian tube Endometrium Ovary Uterus Parametrium Cancer Cervix--Vagina

Stage IIIB Cervical Cancer

Parallel, oblique and template needles

Parallel, oblique and template needles

Figure 4.11 Fit the Guiding Tube in the Interstitial Lunar Ovoid Tube

Figure 4.12 ProGuide Needle with obturator in the Guiding Tube

Guide tubes allow insertion of the needles with flexible titanium obturators

Precise depth of needles with insertion tool

Clinical examples of hybrid applicator cases

Clinical examples of hybrid applicator cases

What it means for Physics

Treatment Planning

Applicator Modeling and Implant in Oncentra[®] Brachy treatment planning allows for fast reconstruction of the applicator

Standard length flexible needles can be reconstructed in different ways with the use of CT markers

What it means for Physics

Treatment Planning

HIPO optimization

- Complex dose optimization in significantly reduced time
- Physics has more control on the parameters of the optimization
- Individual catheters can be locked during the optimization to maintain the dose in that area of the plan.

What it means for Physics

QA

- Regular pre-treatment QA
- Standard length needles and our absolute metric source positioning system reduce the physics workload and verification steps.
- Use the labels to identify the individual flexible needles

Figure 4.17 Needle identification with Number Tags

Conclusions

- The Embrace studies showed the need for a high dose (> 90 Gy)
- The Walter study¹ showed that a combination of intracavitary and interstitial is the best combination to achieve the required dose
- The Advanced Gynecological Applicator provides this combined with the use in MR
- The placement of interstitial needles using guide tubes and the insertion tool reduces the complexity
- Applicator modeling and HIPO optimization reduce planning time needed

The AGA applicator Delivering a conformable dose distribution for advanced stages of cervical cancer

[1] Walter, et al. Combined intracavitary and interstitial brachytherapy for cervical cancer using the novel hybrid applicator Venezia: Clinical feasibility and initial results. Brachytherapy 2018;17:775-81.

Questions

