
RADIATION SHIELDING FOR DIAGNOSTIC RADIOLOGY

DG Sutton, CJ Martin, JR Williams and DJ Peet

working part

The UK approach to shielding x-ray rooms

Colin Martin University of Glasgow Scotland, UK

The UK approach to shielding x-ray rooms

Dose limits and constraints

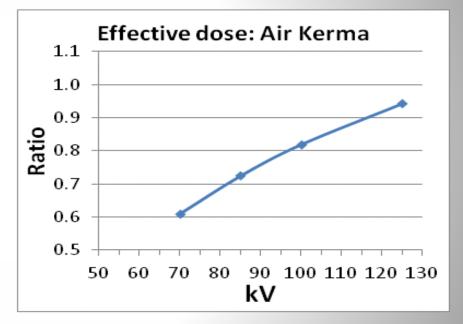
- Occupancy
- Radiation sources
 - Predicting scatter levels from kerma-area product (KAP)
- Shielding radiography and fluoroscopy rooms
 - Primary for radiography
 - Simplifications for mammography and dental
- CT
 - Scatter from DLP
 - Tertiary scatter

Dose Limits and Constraints

Dose Limits

- X-ray room Employees 20 mSv y⁻¹
- Surrounding area Public dose limit 1 mSv y⁻¹

Dose Constraints


- ALARP solution (As Low As Reasonably Practicable)
- Control Room & Surrounds 0.3 mSv y⁻¹

Air Kerma and effective dose

Easier to measure or calculate

Ratio: Effective Dose Air Kerma

Air kerma is greater than E for X-rays, so this is a conservative approach

Use an Air Kerma Constraint 0.3 mGy y⁻¹ (300 µGy y⁻¹)

Occupancy For how long are people exposed

Constraint: 300 µGy y⁻¹
 Dose to <u>individual</u>

Design limit

Air kerma constraint / Occupancy factor (T)
 300/ T µSv y⁻¹

Occupancy Factors

Full Occupancy Factor: 1

- Control room
- **Reception area**
- **Nursing station**

Offices

Adjacent buildings

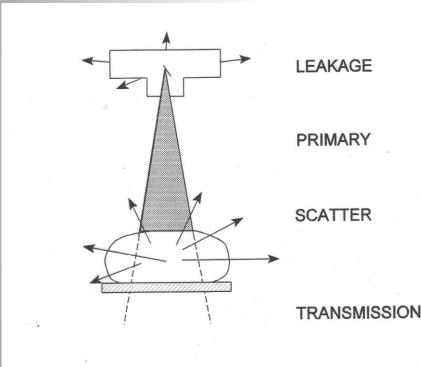
Unattended waiting rooms

Unattended car park

- Shops
- Living quarters
- Partial Occupancy Factor: 0.2 0.5
 - Staff rooms Clinics

Changing rooms

Toilets

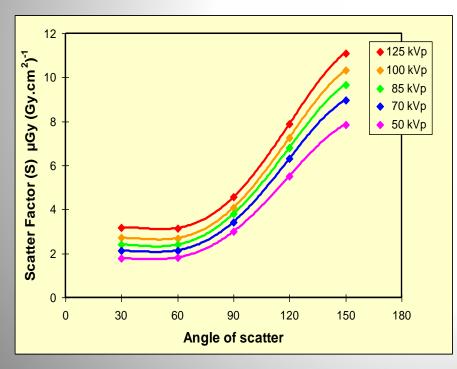

Wards Reporting room

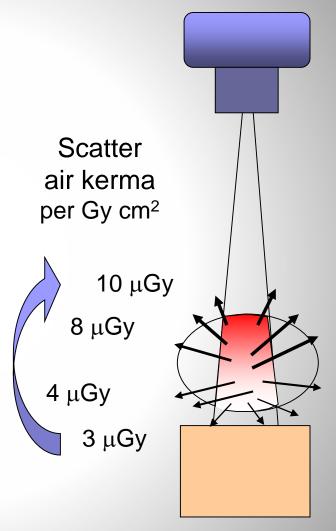
Occasional Occupancy Factor: 0.05 – 0.125

- Corridors,
- Stairways
- Gardens Store rooms

6

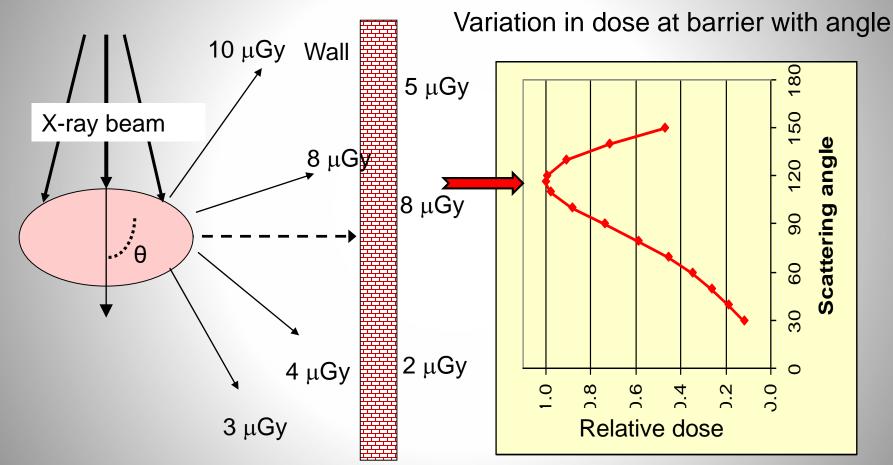
Radiation sources


Secondary scatter □ All modalities Leakage Minimal significance Primary Radiography Tertiary scatter Consider for CT


Scatter air kerma: source of most radiation

- Varies with primary beam air kerma and beam size
- Varies with angle and kV
- Dependent on beam position, patient size
- Scatter α Kerma-Area Product (KAP)
- Equation used to determine scatter air kerma K_s is:
 - $K_s = S \times KAP$
- S is a scatter factor

Scatter


Varies with angle and kV Scatter factor S = K_s / KAP

Williams JR (1996) Br J Radiol, 69,1032

Incident beam parallel to barrier Distance to barrier shortest at an angle of 90°

Taking into account variation with angle and distance to barrier: Maximum air kerma occurs at 117°

Scatter factors (S) for fluoroscopy and radiography from measurement and calculation $S = K_s / KAP$ $S_{max} = 0.031 \text{ x kV} + 2.5 \mu \text{Gy} (\text{Gy} \text{ cm}^2)^{-1} @ 1 \text{ m}$ 85 kV: $S_{max} = 5.1 \ \mu Gy \ (Gy \ cm^2)^{-1}$ For interventional beams with copper filtration

85 kV: $S_{max} = 8 \mu Gy (Gy cm^2)^{-1}$

Workload – in terms of KAP

(At least) Two approaches:

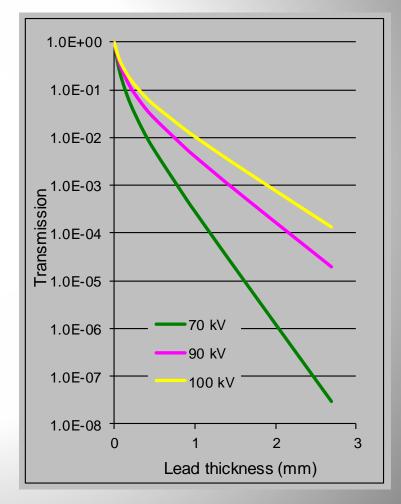
- 1. Predict clinical usage
- Typical KAP values per exam
- 2. Assume typical total KAP values
- Exceptional workload with 800 patients/wk
 KAP: 500 Gy cm²
- Typical workload with 180 patients / wk
 KAP: 150 Gy cm²

Scatter CalculationScatter air kerma $(K_s) = S \times KAP_{Ann}$ d^2 S = Scatter factorKAP_{Ann} = Annual workload

d = Distance to barrier

Design criterion (C) = Dose constraint Occupancy (T)

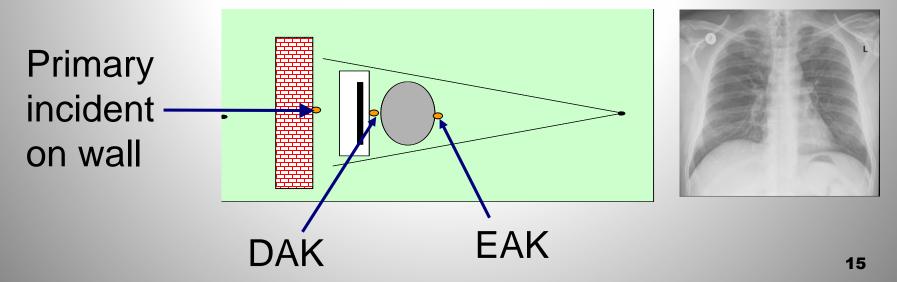
Annual dose constraint = 300μ Gy, T = 0.05 - 1.0


Transmission (B) = C

Empirical equations can be used to link shielding thickness to broad beam transmission

- $\mathsf{B} = [(1+\beta/\alpha).\exp(\alpha\gamma x)-\beta/\alpha]^{-1/\gamma}$
- B = broad beam transmission
- x = thickness of material

$$x = \frac{1}{\alpha \gamma} \ln \left[\frac{B^{-\gamma} + \beta/\alpha}{1 + \beta/\alpha} \right]$$


Archer, Thornby & Bushong (1983) Health Physics, 44, 507-17

Primary beam

Two approaches

- Detector Air Kerma (DAK) Method ~ 10 µGy and allow for lead equivalence of cassette/bucky/table
- Entrance Air Kerma (EAK) method Adjust for inverse square law

Modalities where scatter per image or exam can be used

- Mammography
 7.6 µGy per image
- Intra-oral dental 0.5 µGy per image
- Panoramic dental 0.65 µGy per exam
- Dental cone beam 6-20 µGy per image

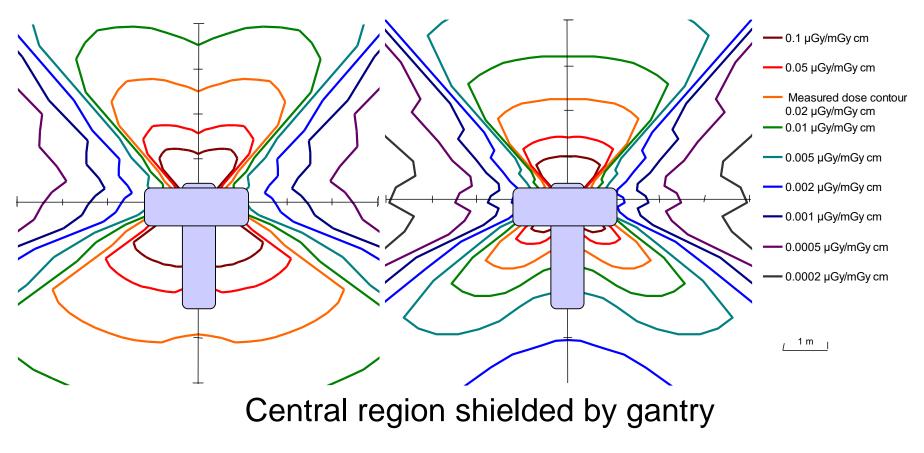
Intra-ora dental clinics

Gypsum Wallboard (plaster board) – 10-15 mm thick Transmission of 40 mm is 0.1 (120 X-rays per week at 1 m)

Protecting a CT scanner room Scatter factors S_{CT} linked to Dose Length Product (DLP)

Coefficients provide links between scatter air kerma and DLP derived from measurements on CT scans of anthropomorphic phantom.

Scatter factors of the form: $S_{CT} = K_s / DLP$


where values of K_s represent the scatter air kerma at 1 m from the iso-centre for a particular direction.

Factors based on scatter measurements on CT scanners for 4 major vendors

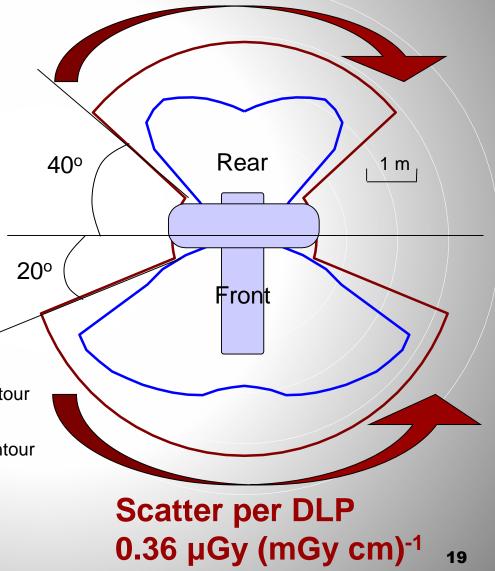
CT scanner dose distributions

Scatter from body scan with Philips MX8000

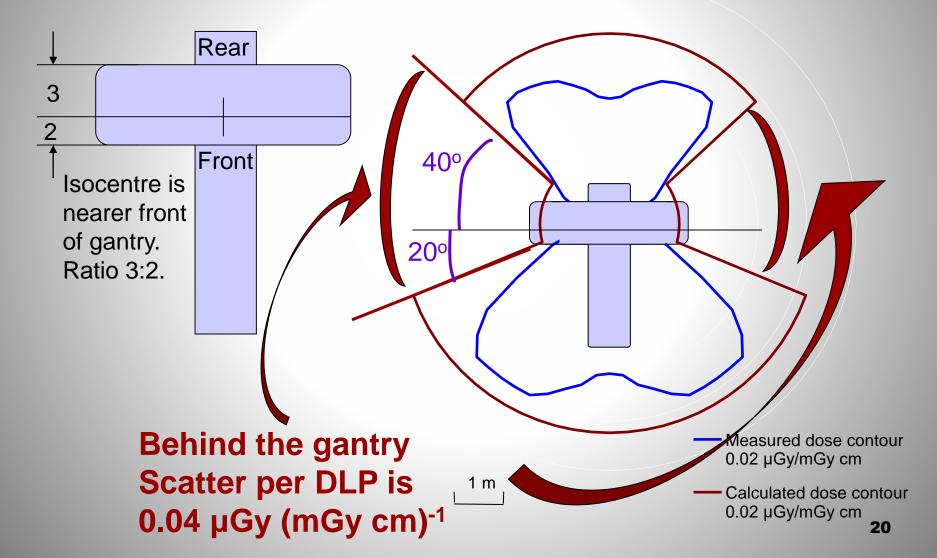
Scatter from head scan with GE Lightspeed 16

Dose per DLP higher for body than head scans

CT body scans


Factors S_{CTbody} for calculating scatter air kerma from DLP

The scatter factors can be considered to be independent of kV

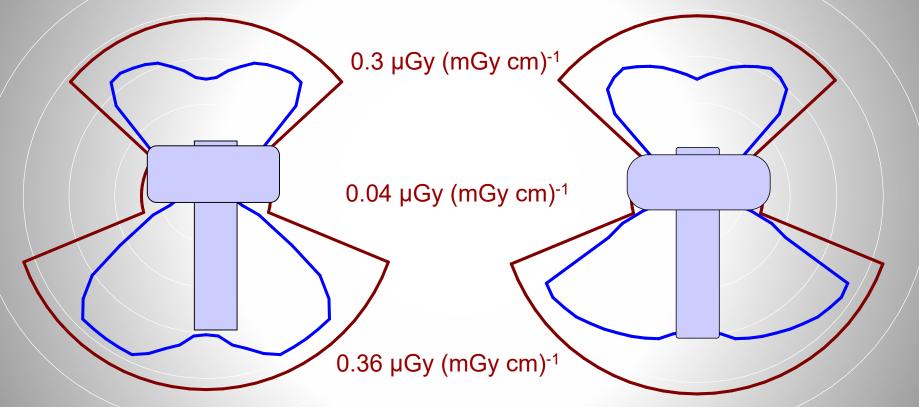

> Measured dose contour 0.02 µGy/mGy cm

 Calculated dose contour 0.02 µGy/mGy cm

Scatter per DLP 0.3 µGy (mGy cm)⁻¹

CT gantry provides protection equivalent to a factor of 10

Scatter factors


Air kerma at 1 m from scanner isocentre at different angles with respect to the scan plain

Negative angles - front of the gantry; positive angles - rear

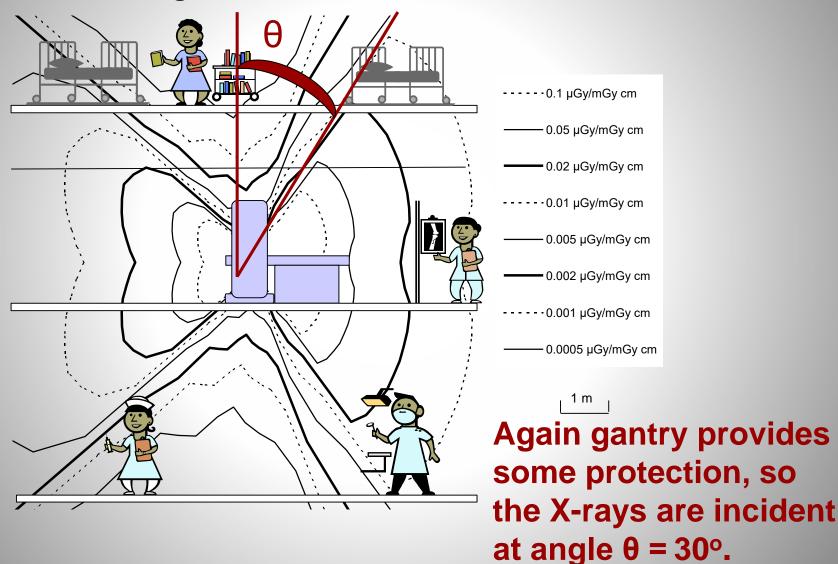
Exam	Sector of CT scanner	Angular range per unit DLP	Scatter factor µGy (mGy cm) ⁻¹	
Body	Front	-90º20º	0.36	
Body	Rear	40° - 90°	0.3	
Body	Gantry	-20º - 40º	0.04	
Head	Front	-90º20º &	0.14	
	and rear	40° - 90°		
Head	Gantry	-20º - 40º	0.014	

Apply inverse square law to air kerma value at 1 m

Comparison of calculated and measured scatter air kerma contours

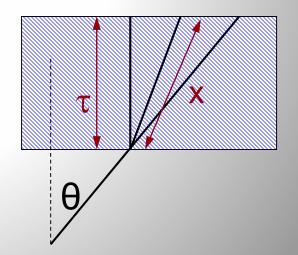
Calculated contours --- are compared with measurements of scatter air kerma ----.

No significant difference found between 120 kV and 140 kV

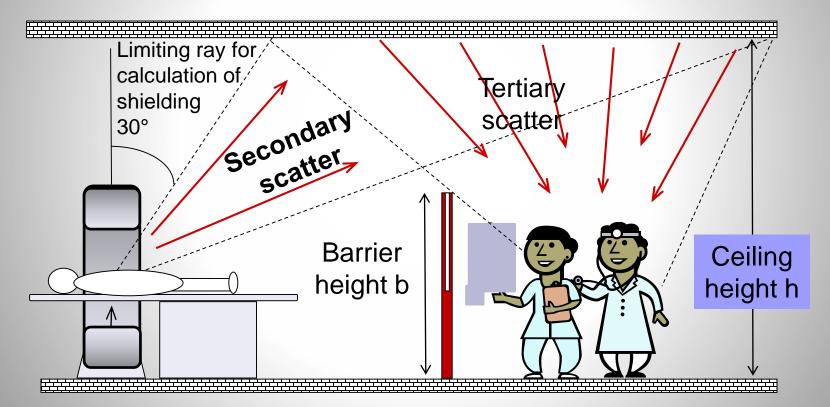

Prediction of workload

- Workload obtained from audit of local practice ideally.
- Consider body and head separately
- Head group all exams using a small field of view
- Mean exam DLPs provide an indication of likely values.
- Mean 850 mGy cm; 3rd quartile 900-1,000 mGy cm

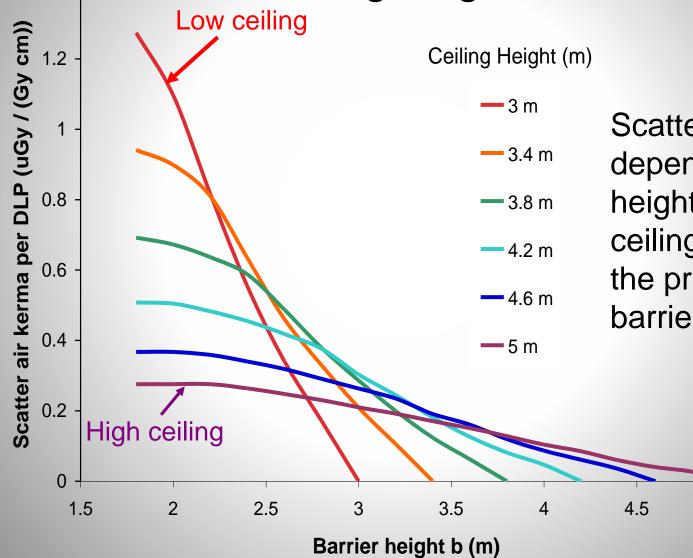
Annual Workloads for 38 CT scanners - body & head scans


	Mean DLP per annum (Gy cm)	3rd Quartile DLP per annum (Gy cm)	Maximum DLP per annum (Gy cm)	
Body	1,900	3,400	5,000	23
Head	1,300	2,500	3,600	
Total	3,200	5,500	8,600	

Protecting the floors above and below

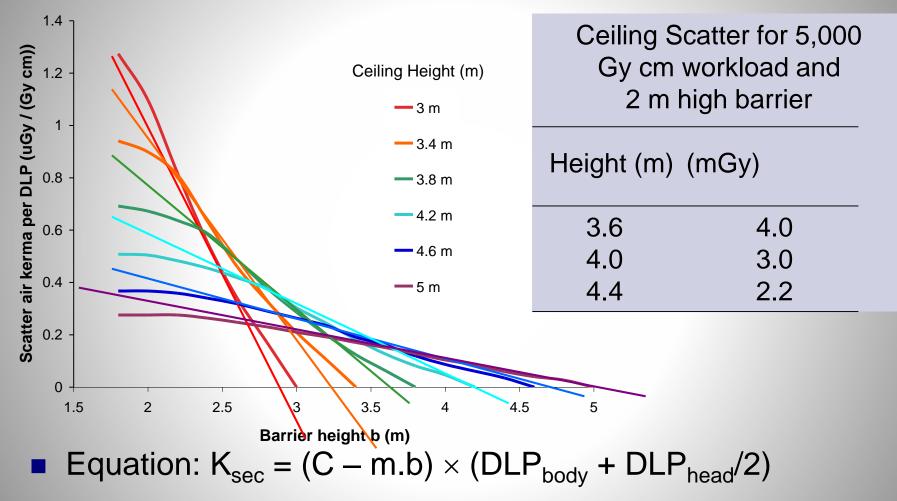

Protecting the ceiling and floor

- Calculated for persons at vertical distance 0.5 m above the next floor level and 1.0 m above floor below.
- Protection afforded by gantry means that only angles of incidence (θ) > 30° need be considered.
- If vertical distance is d, then distance from isocentre for calculation = d / cos θ
- Oblique incidence, so use an equivalent barrier thickness equal to mean of actual thickness and that in direction of scatter
- Calculated thickness =x
- Barrier thickness required τ = x (1 + cos θ) / 2


The problem of tertiary scatter

The scatter of X-rays from the ceiling over short barriers is high enough to give staff a radiation dose

How do we calculate this dose?


Variation of tertiary scatter with barrier and ceiling heights

Scatter level depends on the heights of the ceiling slab and the protective barrier

5

Calculation of tertiary scatter levels

Where b is the height of the barrier and C and m are constants dependent on the height of the ceiling.

Summary

- Set dose constraint and include occupancy
- Scatter is the main component of stray radiation
- Scatter levels can be calculated from the KAP
- Predict KAP based on clinical workload or data in literature
- Radiography requires shielding for both scatter and primary
- Calculation of CT shielding based on DLP workload
- Separate scatter factors for body and head
- Attenuation afforded by gantry can be taken into account
- Obliquity of scatter on ceiling can be taken into account
- Tertiary scatter from ceiling slabs can be calculated

Available from the online BIR bookshop www.bir.org.uk

Thank you for your attention

RADIATION SHIELDING FOR DIAGNOSTIC RADIOLOGY Radiation Shielding for Diagnostic Radiology BIR - 2nd Edition

DG Sutton, CJ Martin, JR Williams and DJ Peet

Report of a BIR working party

Authors: David Sutton Colin Martin Jerry Williams Debbie Peet

Dundee, Glasgow, Edinburgh & Guildford