# Clinical implementation of calculation-based patient specific QA for lattice radiotherapy treatments M. MacFarlane<sup>1,\*</sup>, K. Jiang<sup>1</sup>, M. Guerrero<sup>1</sup>, K Spaeth<sup>1</sup>, K Marter<sup>1</sup>, B Zhang<sup>1</sup>, B Yi<sup>1</sup>, JW Snider<sup>2</sup>, J Molitoris<sup>1</sup>, S Chen<sup>1</sup>



## INTRODUCTION

- Lattice radiotherapy (LRT) is a novel form of spatially fractioned radiation therapy used to de-bulk large tumors<sup>[1]</sup>.
- A LRT treatment plan (shown in Fig 1) consists of multiple co-planar VMAT arcs that have been inversely optimized to deliver 3 Gy to the gross tumor volume (GTV) and 12-18 Gy to a 3D lattice of spheres contained the GTV.

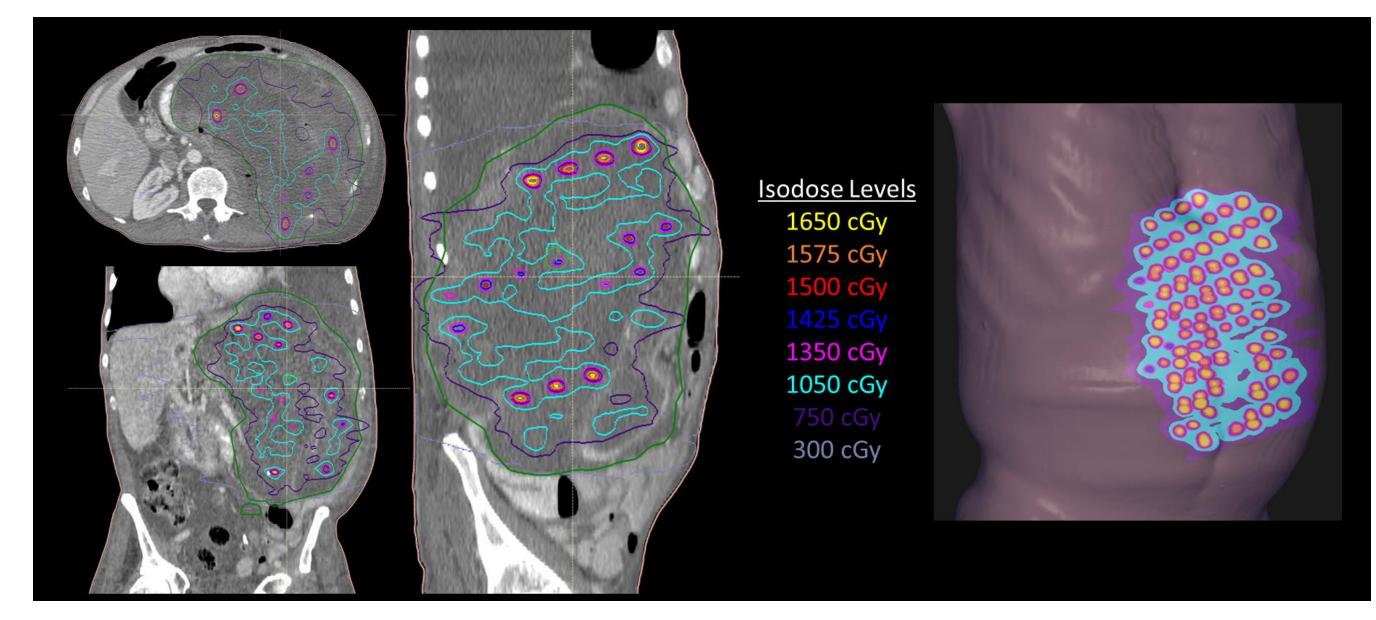



Fig 1. Illustration of an LRT treatment plan (Left) Planar and (Right) 3D renderings of a LRT treatment plan dose distribution. The GTV is shown in green.

These LRT plans are often highly modulated and contain many small fields. As a result, the accuracy of the 3D calculated dose needs to be verified – often with laborious measurement-base techniques.

**Question:** Could more time efficient calculation-based IMRT QA techniques be used instead for patient specific QA.

# METHODS

### Patient Cohort:

- 7 patients who were previously treated with LRT to the pelvis, abdomen and lung were evaluated in this study.
- We compared the results from measurement-based and calculation-based IMRT QA.

<sup>1</sup>Department of Radiation Oncology, University of Maryland School of Medicine, Baltimore MD, USA <sup>2</sup>Department of Radiation Oncology, University of Alabama at Birmingham School of Medicine, Birmingham AL, USA \*Michael.MacFarlane@umm.edu

# **METHODS (CONT.)**

### **Measurement-based IMRT QA:**

- MapCheck 2 device was used for measurements.
- Two measurements were acquired with the device offset 5mm.
- These measurements were then merged into a single higherresolution measurement using custom software (Fig 2).
- 2D gamma analysis was performed with a 3%, 3mm acceptance criteria using the high resolution measurement.

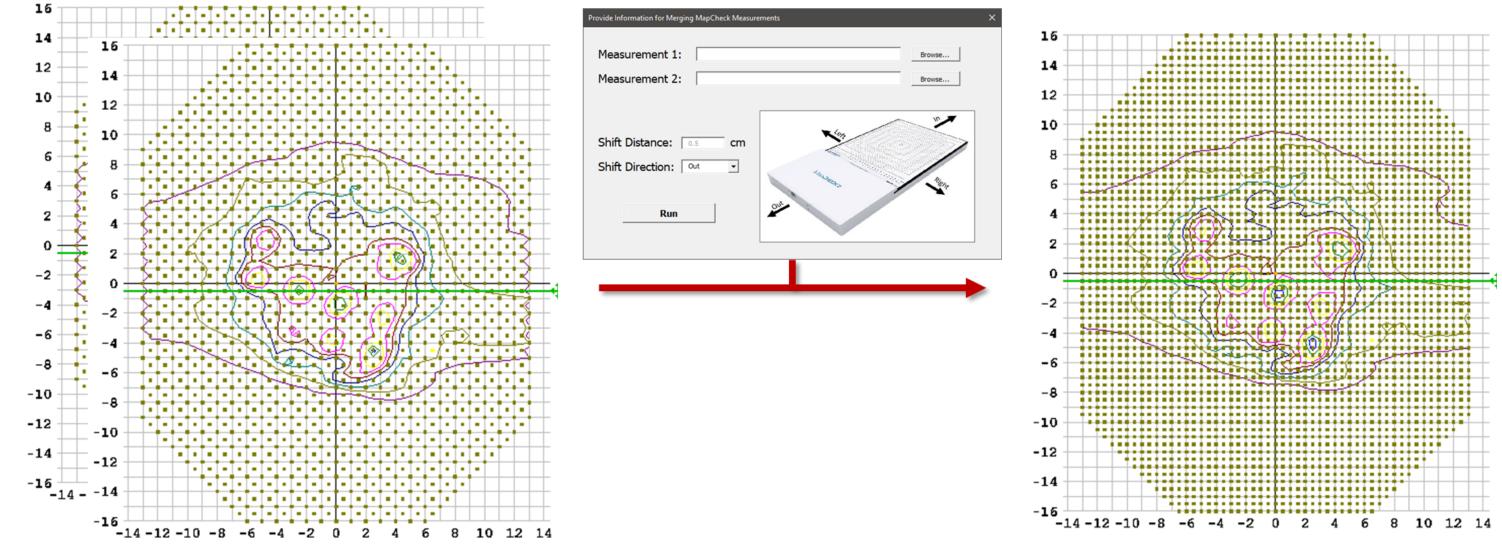



Fig 2. Overview of the measurement merging software (Left) Two measurements were acquired with the device offset 5mm. A custom program (Middle) read the measurement files in and wrote a single higher-resolution measurement file (Right).

### **Calculation-based IMRT QA:**

- Mobius3D was used for calculation-based IMRT QA.
- 3D gamma analysis was performed with a 3%, 3mm acceptance criteria using the original patient CT images.

### **Comparison:**

- The 2D MapCheck gamma analysis results were compared with the 3D gamma analysis results from Mobius3D.
- Factors such as the treatment location, GTV volume, and the ratio of MU to prescription dose (modulation factor) were also recorded.

## ACKNOWLEDGEMENTS

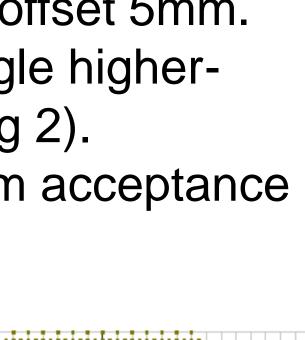
This work was supported by the University of Maryland Medical System. IRB approval was obtained from the University of Maryland.

## RESULTS

The result of the gamma analyses are provided in Table 1.

| Location | GTV Volume (cc) | Modulation<br>Factor | Gamma Pass Rate (3%, 3mm)<br>MapCheck Mobius3D |        |
|----------|-----------------|----------------------|------------------------------------------------|--------|
|          |                 |                      | MapCheck                                       |        |
| Hip      | 798.18          | 4.59                 | 99.8%                                          | 99.9%  |
| Lung     | 758             | 4.75                 | 98.4%                                          | 100.0% |
| Pelvis   | 1575.51         | 6.26                 | 96.1%                                          | 99.6%  |
| Lung     | 319.43          | 2.16                 | 99.6%                                          | 100.0% |
| Pelvis   | 1626.69         | 7.15                 | 99.5%                                          | 100.0% |
| Abdomen  | 6453.58         | 8.54                 | 99.7%                                          | 99.8%  |
| Lung     | 548.79          | 4.48                 | 99.1%                                          | 99.9%  |

#### Table 1. Results of the gamma analysis along with patient & treatment related factors.


appeared to correlate with the passing rates.

## DISCUSSION

- measurements and more time-efficient Mobius3D calculations.
- accuracy.

## REFERENCES

<sup>[1]</sup> X Wu, MM Ahmed, J Wright, S Gupta, and A Pollack. On Modern Technical Approaches of Three-Dimensional High-Dose Lattice Radiotherapy (LRT). Cureus 2(3): e9. doi:10.7759/cureus.9





The median (min, max) gamma-passing rate was 99.9 (99.6, 100) % with Mobius3D and 99.5 (96.1, 99.8) % with MapCheck. Neither the treatment location, GTV volume, nor modulation factor

The overall gamma pass rates of LRT treatment plans agreed well between MapCheck 2

As a result, more time-efficient calculation-based IMRT QA can be used in place of measurements for LRT treatment plans when combined with weekly ML QA measurements to verify MLC delivery