Bilateral Chest-Wall and Locoregional Node Irradiation Using a Dual Isocenter DIBH VMAT Technique for Heart and Lung Sparing

SITEMAN CANCER CENTER

me tor all plans in F

Washington University in St. Louis **BJC** HealthCare SCHOOL OF MEDICINE

@WashURadOnc

M Prusator1*, J Rolfingsmeier2, T Kim1, N Knutson1, N Maughan1, M Thomas1, I Zoberi1, F Revnoso1, (1) Washington University in St. Louis, St. Louis, MO, (2) Barnes-Jewish Hospital, St. Louis, MO @PrusatorM and @RevnosoFJ

PURPOSE/OBJECTIVE(S)

- Deep inspiration breath-hold (DIBH) for a bilateral comprehensive irradiation of the chest-wall and **locoregional nodes** presents a challenging case.
- We have developed a robust dual-isocenter DIBH VMAT technique with visual guidance for maximum sparing of the heart and lungs

MATERIAL & METHODS

- A comprehensive chest-wall plan to irradiate the bilateral chest-wall and locoregional nodes was created using a hypofractionated approach to 4256 cGy in 16 fractions in accordance to the Alliance A221505 trial
- A total of eight partial arcs in two groups of four were optimized simultaneously using automatic feathering to avoid hot/cold spots in the overlap region.

Figure 1: The preferred arc arrangement used for each isocenter. Both plans were treated using 4 partial co-

• A 1 cm virtual skin flash bolus (HU=-500) was used for optimization to take into account setup uncertainties and ensure appropriate coverage at the skin

Figure 3: A) The individual

field dose gradients created

from the auto-feathering option turned on during

> а shift

isocenter, where the blue.

the target, lungs and heart

to increase

and B)

analysis

5mm

in

optimization

Uncertainty

translational

respectively.

assuming

plan robustness

Figure 4: Beam's eye view example of an arc segment demonstrating the result of flash optimization. Note in the red oval how the MLCs do not close to the patient's skin surface

RESULTS

PTV Total coverage achieved was V95%=98.8%, while mean heart dose was kept at 408 cGy, total lung V18Gy=17.7% and V4.8Gy were 63.0%.

- All Alliance A221505 hypofractionated dose constraints were met at the preferred or acceptable level while highly exceeding all coverage constraints.
- Robustness analysis showed a worst case scenario of PTV coverage of V95%=94.0%.
- Minimal breath-hold coaching was needed from the therapy team with the use of patient visual feedback. Each arc was completed in nearly a single breath-hold and treatment was completed in 30 minutes.

SUMMARY/CONCLUSION

- · A dual isocenter DIBH VMAT technique was developed using visual-guidance for comprehensive chest-wall and locoregional node irradiation.
- · The technique was able to meet relevant OAR constraints and an efficient and robust treatment delivery.

REFERENCES/ACKNOWLEDGEME

Tamburella C et al. Jour of Rad Oncol Bio Phys. 2016. 96(2)E45-E46 Varian Eclipse 15.6 Technical Reference Guide