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Outline

• Motivation

• Components of segmentation pipeline
• Hardware (Institutional HPC, Cloud services AWS, Azure, Google cloud)

• Software (frameworks for training and deployment) 

• Applications
• Clinical (Radiation therapy treatment planning)

• Research (Consistent data collection for research)

• Demos
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Motivation

• Classification
• predict target class at the patient level from an image or region of interest. 

• Detection
• detection tasks aim to predict the location of potential lesions, often in the 

form of points, regions, or bounding boxes of interest.

• Segmentation
• identification of pixels or voxels composing an organ or structure of interest.

Reference: Deep Learning: A Primer for Radiologists, Gabriel Chartrand, Phillip M. Cheng, Eugene Vorontsov, Michal 
Drozdzal, Simon Turcotte, Christopher J. Pal, Samuel Kadoury, and An Tang, RadioGraphics 2017 37:7, 2113-2131 
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Motivation

➢ Screening and follow-up 

• Ardila, D., Kiraly, A.P., Bharadwaj, S. et al. End-to-end lung cancer screening 
with three-dimensional deep learning on low-dose chest computed 
tomography. Nat Med 25, 954–961 (2019) doi:10.1038/s41591-019-0447-x

➢Treatment planning – clinical use cases

• Synthetic CT generation from MR (Jiang et al, Wolterink et al, Han et al, etc.)

• Knowledge-based prediction of 3D dose distribution (Shiraishi and Moore, 
etc.)

• Auto contouring for treatment planning / Adaptive RT 
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Building blocks of segmentation pipeline

Question and Dataset

Training framework

Domain-optimized tools

Hardware
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High Performance Computing (HPC) resources

• Cloud computing with specialized hardware – AWS, Azure, Google 
cloud, etc.

• Institutional HPC 
e.g., hpc.mskcc.org
o 91 nodes, 4640 CPU cores 
o 372 GPUs (4 dedicated to Medical Physics)
o 3.6PB of fast disk storage, and 6.0PB of ‘warm’ archive storage space

• Clinical HPC
o 4 nodes, 144 CPU cores
o 20 GPUs 
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Software - building blocks

Reference: https://developer.nvidia.com/blog/annotate-adapt-model-medical-imaging-clara-train-sdk/
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Domain-optimized framework – building 
blocks 

Segment
(model and its 
dependencies)

Pre-process
o Parse DICOM
o Select region of 

interest
o Image filters
o Populate 

channels

Post-process
o Label fusion
o Morphological 

processing
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Transformations for medical images

Resample Crop Resize
Transform

view
Populate 

channels

Filter

image

"channels": 
[{"imageType":"original", "slice":"current-1"},
{"imageType":"original", "slice":"current"},
{"imageType":"original", "slice":"current+1"}] 
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Domain-optimized frameworks for medical 
imaging

• MONAI - PyTorch-based framework for deep learning in healthcare 
imaging. It provides domain-optimized foundational capabilities for 
developing healthcare imaging training workflows in a native PyTorch
paradigm. (https://github.com/Project-MONAI/MONAI)

• NVIDIA Clara – healthcare application framework for AI-powered imaging, 
genomics, and the development and deployment of smart sensors 
(https://docs.nvidia.com/clara) 

• CERR – Models for segmentation of various normal tissues used in 
radiation therapy treatment planning. (https://github.com/cerr/CERR) 

• DeepInfer - an open-source toolkit for developing and deploying deep 
learning models within the 3D Slicer medical image analysis platform 
(http://www.deepinfer.org)
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Standardizing the processing pipeline

• NVIDIA-Clara MMAR

• CERR pre/post-processing pipeline

• MONAI “transforms” module
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Medical Model Archive (MMAR) in NVIDIA

• The MMAR (Medical 
Model ARchive) 
defines a standard 
structure for organizing 
all intermediate steps 
and results produced 
during the model 
development life cycle.
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CERR Pre/post 
processing settings
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MONAI APIs
• apps: high level medical domain specific deep learning applications.

• config: for system configuration and diagnostic output.

• data: for the datasets, readers/writers, and synthetic data.

• handlers: defines handlers for implementing functionality at various stages in the training 
process.

• inferers: defines model inference methods.

• losses: classes defining loss functions.

• optimizers: classes defining optimizers.

• transforms: defines data transforms for preprocessing and postprocessing.

• utils: generic utilities intended to be implemented in pure Python or using Numpy, and not with 
Pytorch, such as namespace aliasing, auto module loading.

• visualize: utilities for data visualization. 14



Model deployment

• Singularity containers
• can be run by users without root privileges.

• checksums for making the software stacks 
reproducible 

• compatibility with HPC systems and enterprise 
architectures  

• SingularityHub, DockerHub

• ModelHub (http://modelhub.ai) - repository 
of self-contained deep learning models 
pretrained for a wide variety of applications.

Segmentation framework
CUDA
Processing libraries
Model and weights
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Model deployment

• Containers
• Singularity unavailable for Windows.

• Docker requires admin privilege, so not suitable for bare metal HPC.

• Containers cannot be run within another container (e.g. Google Colab)

• Anaconda
• Package manager for Python and R (also supports other 

• Requires dependencies (e.g., CUDA) to be installed on the host machine.
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Input Images 

(DICOM, planC, 

nrrd, mha)

Model 

configuration 

(JSON)

Segmentation 

model 

Output 

segmentation 
(DICOM,

planC, nrrd, mha)

Label 

map

Post 

Process
Pre 

Process

Portable framework for image segmentation

Aditi Iyer, Eve Locastro, Aditya P. Apte, Harini Veeraraghavan, Joseph O. Deasy, Portable framework to deploy deep 
learning segmentation models for medical images, bioRxiv 2021.03.17.435903; doi: 
https://doi.org/10.1101/2021.03.17.435903.

Aditya P. Apte, Aditi Iyer, Maria Thor, et al, Library of deep-learning image segmentation and outcomes model-
implementations, Physica Medica, Volume 73, 2020, Pages 190-196, ISSN 1120-1797, 
https://doi.org/10.1016/j.ejmp.2020.04.011. 17

https://doi.org/10.1101/2021.03.17.435903
https://doi.org/10.1016/j.ejmp.2020.04.011


AI Segmentation example using CERR
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XNAT Pipeline Engine / Event service

Pipeline 
Engine

Segmentation
output

OHIF Viewer

Segmentation 
model

Review

Export image
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• XNAT is an open-
source project 
produced by 
Neuroinformatics 
Research Group at the 
Washington University 
School of Medicine.

• Centralized data 
management resource 
to multiple 
investigators and 
research studies.
• Import, archive, 

manage and securely 
distribute imaging 
datasets.



XNAT segmentation pipeline demo
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Fully automatic vs user-assisted contouring 

• Semi-automatic:
• Thresholding, region growing available in clinical software and research tools 

such as ITKSnap, 3DSlicer, CERR.

• Active-learning
• FOVIA

• NVIDIA Clara

• MONAI-label
The MONAI-label is a server-client system that facilitates interactive medical image 
annotation by using AI. It is an open-source and easy-to-install ecosystem that can run 
locally on a machine with one or two GPUs. Both server and client work on the 
same/different machine. (Reference: https://github.com/Project-MONAI/MONAILabel)
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Example of AI assisted segmentation 
(DeepGrow3D) in FOVIA

Reference: https://www.youtube.com/watch?v=bllg2lwSfO4
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Segmentation performance evaluation

Reference: Femke Vaassen, Colien Hazelaar, Ana Vaniqui, et al, Evaluation of measures for assessing time-
saving of automatic organ-at-risk segmentation in radiotherapy, Physics and Imaging in Radiation Oncology, 
Volume 13, 2020, Pages 1-6, ISSN 2405-6316, https://doi.org/10.1016/j.phro.2019.12.001

Volumetric DICE Hausdorff 95 distance Added Path LengthSurface DICE
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APL correlates with time required for 
contouring

Reference: Femke Vaassen, Colien Hazelaar, Ana Vaniqui, et al, Evaluation of measures for assessing time-saving of 
automatic organ-at-risk segmentation in radiotherapy, Physics and Imaging in Radiation Oncology, Volume 13, 2020, 
Pages 1-6, ISSN 2405-6316, https://doi.org/10.1016/j.phro.2019.12.001
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Manual vs AI contours – time savings (Thoracic CT)

Reference: Tim Lustberg, Johan van Soest, Mark Gooding, Clinical evaluation of atlas and deep learning 
based automatic contouring for lung cancer, Radiotherapy and Oncology, Volume 126, Issue 2, 2018, 
Pages 312-317, ISSN 0167-8140, https://doi.org/10.1016/j.radonc.2017.11.012

Comparison between DL and Atlas based contouring for Lung OARs. DL resulted in significant 
time saving over Atlas based and manual contouring.

25

https://doi.org/10.1016/j.radonc.2017.11.012


Manual vs AI contours – time savings (Prostate CT)

Comparison between DL and Atlas based 
contouring for Prostate OARs. DL resulted in 
significant time saving over Atlas based and 
manual contouring.

Reference: W. Jeffrey Zabel, Jessica L. Conway, 
Adam Gladwish et al, Clinical Evaluation of Deep 
Learning and Atlas-Based Auto-Contouring of 
Bladder and Rectum for Prostate Radiation 
Therapy, Practical Radiation Oncology, Volume 
11, Issue 1, 2021, Pages e80-e89, ISSN 1879-
8500,

https://doi.org/10.1016/j.prro.2020.05.013
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Clinical experience at MSKCC (Elguindi et al)

• Rollout for clinical use:
• Prostate T1 axial MR – 2019 (Elguindi et al, 

Physics and Imaging in Radiation Oncology, Vol.12, pp. 
80-86, 2019, )

• H&N CT (Jiang et al, arXiv:1909.05054 and Iyer et al, 
bioRxiv 772178)

• Released May 2020

• Updated Model: Mid Feb 2021

• Dataset: 174 patients collected (106 v1, 64 v2), out of approximately 350 
patients in total

• Structures contoured: 

• Left/Right parotids, Left/Right submandibular glands, brainstem, mandible, 
Cord, Oral Cavity, Left/Right medial pterygoid and Left/Right masseter muscles

• Average APL: 194.6 cm, average time savings 
of 8.6 minutes with Left/Right parotids, 
Left/Right submandibular glands, brainstem.
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Clinical Workflow: HPC + Containers

HPC
SSH

3

4

5
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Deep learning-based segmentation of OARs in H&N CT scan
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Consistent segmentation in clinical trials

Reference: Maria Thor, Aditya Apte, Rabia Haq, et al, Using Auto-Segmentation to Reduce Contouring and 
Dose Inconsistency in Clinical Trials: The Simulated Impact on RTOG 0617, International Journal of 
Radiation Oncology*Biology*Physics, Volume 109, Issue 5, 2021, Pages 1619-1626, ISSN 0360-3016, 
https://doi.org/10.1016/j.ijrobp.2020.11.011 30
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Models available in CERR
SITE MODALITY ORGAN/S

MODEL / 

FRAMEWORK
REFERENCE

Lung CT
Heart, Heart sub-structures, 

Pericardium, Atria, Ventricles
DeepLabV3 / Pytorch

Haq et al, Physics and Imaging in Radiation 

Oncology, Vol 14, pp 61-66, 2020 

https://doi.org/10.1016/j.phro.2020.05.009

Lung CT Nodules
Incremental MRRN / Keras, 

Tensorflow

Jiang et al, IEEE Transactions on Medical 
Imaging, 38(1): 134 – 144 

https://doi.org/10.1109/TMI.2018.2857800

Prostate MRI

Bladder, Prostate and Seminal 

Vesicles (CTV), Penile Bulb, 

Rectum, Urethra and Rectal 

Spacer

DeepLabV3+, Tensorflow-

GPU

Elguindi et al, Physics and Imaging in Radiation 

Oncology, Vol.12, pp. 80-86, 2019, 

https://doi.org/10.1016/j.phro.2019.11.006

Head & 

Neck
CT

Masseters (left, right), Medial 

Pterygoids (left, right), 

Constrictor muscles (superior, 

middle, inferior) and Larynx

DeepLabV3+ /  Pytorch
Iyer et al, 

https://www.biorxiv.org/content/10.1101/7721

78v2.full

Head & 

Neck
CT

Parotids (left, right), Mandible, 

Sub-mandibular glands (left, 

right), Brain stem

Self attention /  Pytorch Jiang et al, https://arxiv.org/abs/1909.05054
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Models available in open-source frameworks

• NVIDIA Clara (https://docs.nvidia.com/clara/deploy/BundledPipelines/index.html)

• Pipelines for Liver, Spleen, Lung, Lung tumor, Pancreas tumor, Colon tumor, 
Brain tumor.

• DeepInfer (http://www.deepinfer.org/pages/models/)

• Prostate segmentation for T2 MRI, Brain tumor segmentation for Axial T1 
MRI and FLAIR

• ModelHub (http://modelhub.ai/)

• Liver and liver tumor segmentation for CT, Brain tumor segmentation, 
prediction of dental artifacts, Right ventricle segmentation from MRI scan, 
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Deep Learning Criticisms

• Long on data but short on knowledge, medical reasoning, and new 
insights. (Partho P. Sengupta and Y.S. Chandrashekhar, “Building Trust in AI: Opportunities and 
Challenges for Cardiac Imaging”, J Am Coll Cardiol Img. 2021 Feb, 14 (2) 520–522)

• External validation to explore the model generalizability in external patient 
cohorts obtained from different institutions, geographic boundaries, and 
different time periods.

• Approaches to probe and interpret AI techniques have been proposed 
recently with the emergence of techniques like symbolic AI, knowledge 
graphs, and their underlying semantic technologies that can provide 
reasoning mechanisms.
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Conclusion

• Numerous open-source frameworks to train and deploy models for 
clinical and research use.

• Standardizing data processing pipelines enable reproducible application 
of models

• Encapsulating models in containers makes them readily deployable, 
hence facilitating their validation on external/unseen datasets.

• AI is already helping to boost productivity in clinic. This is just the 
beginning!
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