Accelerated Imaging Strategies for Combined Spin and Gradient Echo (SAGE) Acquisitions

July 26, 2021

Sudarshan Ragunathan, Ph.D.
Imaging Research Specialist
Barrow Neuroimaging Innovation Center
Outline

• Parallel imaging review
• Clinical DSC MRI
• SAGE as an alternative to single echo DSC MRI
 • SMS/MB + SENSE/GRAPPA
• Other SAGE implementations
• Summary
Parallel Imaging Review

\[F_1 = A_1 + B_1 = I_A \times C_{A1} + I_B \times C_{B1} \]

\[F_2 = A_2 + B_2 = I_A \times C_{A2} + I_B \times C_{B2} \]

\[F_3 = A_3 + B_3 = I_A \times C_{A3} + I_B \times C_{B3} \]

\[F_4 = A_4 + B_4 = I_A \times C_{A4} + I_B \times C_{B4} \]
Clinical Perfusion using DSC MRI

Inject CA

Dynamic Imaging

Kinetic Analysis

Blood Volume
T_1 effects
(direct interaction)

T_2^* effects
(through space)
Clinical challenge: contrast agent leakage

- Mitigate leakage effects
 - Leakage correction [1]
 - Preload dosing
 (requires two contrast injections)

- Standardized DSC-MRI protocols [2]
 - Longer TEs (25-35ms)
 - Moderate TRs (<1.5s)
 - Moderate flip angles (FA, 60-70°)
 - Preload dose: ↓ sensitivity to T_1 leakage effects

Slide Courtesy: Ashley Stokes PhD, Barrow Neurological Institute
Multi-Echo DSC-MRI

- Eliminates T1 leakage effects
- Enables T1 and T2* quantification – simultaneous DSC/DCE

Quarles et al, MRI 2012
Multi-echo spin and gradient-echo (SAGE)

- Total and microvascular CBV, CBF, MTT, TTH
- Vessel size and vessel architectural imaging
- K_{trans} and v_e
- Cellularity

REDUCED SPATIO-TEMPORAL COVERAGE WHEN COMPARED TO SINGLE ECHO EPI

Slide Courtesy: C Chad Quarles PhD, Barrow Neurological Institute
Simultaneous Multi-Slice (SMS) / MultiBand (MB)

Multiband RF Pulse

Slices must be spaced adequately apart to resolve superimposition

Extended spatial coverage with MB-SAGE when compared with Traditional SAGE
With fixed spatial coverage temporal resolution increases with MB factor
Multiband SENSE with Nyquist Ghost Correction

Accelerated whole-brain perfusion imaging using a simultaneous multislice spin-echo and gradient-echo sequence with joint virtual coil reconstruction

Joint Virtual Coil GRAPPA (JVC-GRAPPA)

channels = 2 x N_c x N_e

N_c - number of coils
N_e - number of echoes

JVC GRAPPA Reconstruction with Phase Matching

Accelerated whole-brain perfusion imaging using a simultaneous multislice spin-echo and gradient-echo sequence with joint virtual coil reconstruction

Simultaneous multi-slice spin- and gradient-echo dynamic susceptibility-contrast perfusion-weighted MRI of gliomas

Simultaneous multi-slice spin- and gradient-echo dynamic susceptibility-contrast perfusion-weighted MRI of gliomas

SAGE-based fMRI

- SAGE-fMRI combines multi-(gradient)-echo (MGE) and spin-echo (SE) advantages
 - Less sensitive to susceptibility effects
 - Improved BOLD sensitivity via multiple echoes [1-2]
 - Quantify T_2^* or echo-weighting combinations
 - Less sensitive to large draining veins
 - Improved spatial specificity via multiple contrasts

Hypothesis: SAGE-fMRI will improve signal fidelity, BOLD sensitivity, and spatial localization of activation

\[D = 1 \times 10^{-3} \text{mm}^2/\text{s}, \zeta = 5\%, \Delta \chi = 0.264 \text{ppm} \]
Development of SAGE-based fMRI

- Advantages of SAGE-fMRI
 - Less sensitive to susceptibility effects
 - Improved BOLD CNR via multiple echoes
 - T_2^* or echo-weighting combinations
 - Yet to be seen:
 - Improved spatial localization via multiple contrasts

- Future work
 - Apply SAGE-fMRI in Alzheimer’s disease using memory paradigms
 - Further improvements in optimizing multi-echo combinations
 - Biophysical basis of multi-contrast fMRI signals and noise

#s in red indicate # significant voxels for each method

Analysis by Dr. Maurizio Bergamino

Slide Courtesy: Ashley Stokes PhD, Barrow Neurological Institute
Spiral SAGE MRI

Summary

• Advantages of SAGE over single echo DSC MRI
 • Combined DCE/DSC information
 • Vessel size index / mean vessel diameter
• SMS/MB + Parallel Imaging
 • Same spatiotemporal coverage as clinical DSC MRI
• SAGE applications to fMRI for improved BOLD CNR
• Non-Cartesian implementations of SAGE for efficient k-space coverage
Acknowledgements

Barrow Neurological Institute
• Dr. Chad Quarles
• Dr. Laura Bell
• Dr. Ashley Stokes
• Dr. Natenael Semmineh
• Dr. Zhiqiang Li
• Lori Steffes
• Sharmeens Maze

Philips Healthcare
• Dr. Melvyn Ooi
• Dr. Ryan Robison

Research Support
• NIH
• Philips Healthcare

THANK YOU