Accelerated Imaging Strategies for Combined Spin and Gradient Echo (SAGE) Acquisitions

July 26, 2021

Sudarshan Ragunathan, Ph.D.

Imaging Research Specialist Barrow Neuroimaging Innovation Center

Outline

- Parallel imaging review
- Clinical DSC MRI
- SAGE as an alternative to single echo DSC MRI
 - SMS/MB + SENSE/GRAPPA
- Other SAGE implementations
- Summary

ngle echo DSC MRI A

Parallel Imaging Review

Journal of Magnetic Resonance Imaging, Volume: 36, Issue: 1, Pages: 55-72, First published: 13 June 2012, DOI: (10.1002/jmri.23639)

Full FoV Full Resolution

(a)

Full FoV Lower Resolution

(b)

Smaller FoV Full Resolution

(c)

Journal of Magnetic Resonance Imaging, Volume: 36, Issue: 1, Pages: 55-72, First published: 13 June 2012, DOI: (10.1002/jmri.23639)

$$F_1 = A_1 + B_1$$

= I_A x C_{A1} + I_B x C_{B1}

$$F_2 = A_2 + B_2$$

= I_A x C_{A2}+ I_B x C_{B2}

$$F_4 = A_4 + B_4$$
$$= I_A \times C_{A4} + I_B \times C_{B4}$$

Journal of Magnetic Resonance Imaging, Volume: 36, Issue: 1, Pages: 55-72, First published: 13 June 2012, DOI: (10.1002/jmri.23639)

Blood Volume

Slide Courtesy : C Chad Quarles PhD, Barrow Neurological Institute

T₁ **effects** (direct interaction)

T₂* effects (through space)

Slide Courtesy : C Chad Quarles PhD, Barrow Neurological Institute

Clinical challenge: contrast agent leakage

Mitigate leakage effects Leakage correction [1] Preload dosing (requires two contrast injections)

Standardized DSC-MRI protocols [2]

- Longer TEs (25-35ms)
- Moderate TRs (<1.5s)</p>
- Moderate flip angles (FA, 60-70°)
- Preload dose:
 sensitivity to T₁ leakage effects

[1] Boxerman JL, et al. AJNR 2006;27(4):859-867. [2] Welker K, et al., *AJNR* 2015 36:E41–E51.

uncorrected CBV corrected CBV

post-Gd

Standard DSC-MRI Protocol:

Preload injection

6-minute delay

Main injection

Slide Courtesy : Ashley Stokes PhD, Barrow Neurological Institute

Multi-Echo DSC-MRI

- Eliminates T1 leakage effects Ø

Quarles et al, MRI 2012

Enables T1 and T2* quantification – simultaneous DSC/DCE

Slide Courtesy : C Chad Quarles PhD, Barrow Neurological Institute

34(9):1248. [5] Semmineh NB, et al. MRM (2015) 74(3):772. Slide Courtesy : C Chad Quarles PhD, Barrow Neurological Institute

Simultaneous Multi-Slice (SMS) / MultiBand (MB)

Setsompop, K., Gagoski, B.A., Polimeni, J.R., Witzel, T., Wedeen, V.J. and Wald, L.L. (2012), Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty. Magn. Reson. Med., 67: 1210-1224. https://doi.org/10.1002/mrm.23097

MultiBand-SAGE EPI

Ragunathan S et al. Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)

Parameter	Traditional SAGE	Multiband SA
# of echoes	5	5
TE1 – TE5 (ms)	8.8/26/55/72/90	8.7/26/54/71/8
TR(ms)	1800	1800
Spatial resolution (mm ³)	3.16 x 3.16 x 5	3.16 x 3.16 x
Temporal resolution (ms)	1800	1800
Partial Fourier	0.75	0.75
SENSE	2	2
Multiband factor	N/A	2
FOV (mm ²)	240 x 240	240 x 240
# slices (single package)	15	30

- Extended spatial coverage with MB-SAGE when compared with Traditional SAGE
- With fixed spatial coverage temporal resolution increases with MB factor

Multiband SENSE with Nyquist Ghost Correction

doi:10.1002/mrm.25897

Hennel, F., Buehrer, M., von Deuster, C., Seuven, A. and Pruessmann, K.P. (2016), SENSE reconstruction for multiband EPI including slice-dependent N/2 ghost correction. Magn. Reson. Med., 76: 873-879. <u>https://doi.org/10.1002/mrm.25915</u>

MultiBand-SAGE EPI

MBSAGE Echo2 MBSAGE Echo3 MBSAGE Echo1

Ragunathan S et al Proc. Intl. Soc. Mag. Reson. Med. 29 (2021)

Accelerated whole-brain perfusion imaging using a simultaneous multislice spin-echo and gradient-echo sequence with joint virtual coil reconstruction

Manhard, MK, Bilgic, B, Liao, C, et al. Magn Reson Med. 2019; 82: 973–983. https://doi.org/10.1002/mrm.27784

Joint Virtual Coil GRAPPA (JVC-GRAPPA)

channels = $2 \times N_c \times N_c$ N_c - number of coils N_e - number of echoes

Bilgic, B., Kim, T.H., Liao, C., Manhard, M.K., Wald, L.L., Haldar, J.P. and Setsompop, K. (2018), Improving parallel imaging by jointly reconstructing multi-contrast data. Magn. Reson. Med., 80: 619-632. https://doi.org/10.1002/mrm.27076

JVC GRAPPA Reconstruction with Phase Matching

Manhard, MK, Bilgic, B, Liao, C, et al. Magn Reson Med. 2019; 82: 973–983. https://doi.org/10.1002/mrm.27784

gradient-echo sequence with joint virtual coil reconstruction

Conventional **GRAPPA**

Manhard, MK, Bilgic, B, Liao, C, et al. Magn Reson Med. 2019; 82: 973–983. https://doi.org/10.1002/mrm.27784

Accelerated whole-brain perfusion imaging using a simultaneous multislice spin-echo and

Simultaneous multi-slice spin- and gradient-echo dynamic susceptibility-contrast perfusion-weighted MRI of gliomas

FatSat RF Grad EPI Echo 1 **(A)** MB=2 **(E)** MB=

Han, M, Yang, B, Fernandez, B, et al. . *NMR in Biomedicine*. 2021; 34:e4399. <u>https://doi.org/10.1002/nbm.4399</u>

Simultaneous multi-slice spin- and gradient-echo dynamic susceptibility-contrast perfusion-weighted MRI of gliomas

Han, M, Yang, B, Fernandez, B, et al. . *NMR in Biomedicine*. 2021; 34:e4399. <u>https://doi.org/10.1002/nbm.4399</u>

SAGE-based fMRI

SAGE-fMRI combines multi-(gradient)-echo (MGE) and spin-echo (SE) advantages

- Less sensitive to susceptibility effects
- Improved BOLD sensitivity via multiple echoes [1-2]
 - Quantify T_2^* or echo-weighting combinations
- Less sensitive to large draining veins
- Improved spatial specificity via multiple contrasts

Hypothesis: SAGE-fMRI will improve signal fidelity, BOLD sensitivity, and spatial localization of activation

[1] Kundu P, et al., PNAS 2013. Posse S, et al., MRM 1999. Poser BA, et al., MRM 2006. [2] Norris DG, et al., Neuroimage 2002. Binney RJ, et al., Cerebral Cortex 2010.

 $D = 1e-3 \text{ mm}^2/\text{s}, \zeta = 5\%$ $\Delta \chi = 0.264 \text{ ppm}$

Slide Courtesy : Ashley Stokes PhD, Barrow Neurological Institute

Development of SAGE-based fMRI

Advantages of SAGE-fMRI

- Less sensitive to susceptibility effects
- Improved BOLD CNR via multiple echoes
 - \blacksquare T₂^(*) or echo-weighting combinations
- Yet to be seen:
 - Improved spatial localization via multiple contrasts

Future work

- Apply SAGE-fMRI in Alzheimer's disease using memory paradigms
- Further improvements in optimizing multi-echo combinations
- Biophysical basis of multi-contrast fMRI signals and noise

Analysis by Dr. Maurizio Bergamino

180 64 EPI EPI EPI EPI EPI readout 🗖 readout 🦳 readout readout readout 48**→** TE₁ TE_2 TE_3

Single-echo analysis

Multi-echo SAGE analysis

#s in red indicate # significant voxels for each method

Slide Courtesy : Ashley Stokes PhD, Barrow Neurological Institute

Spiral SAGE MRI

EPI-SAGE acquisition

Stokes A, Ragunathan S et al. Mag. Res. Med. 2021 (under review)

Spiral SAGE MRI

Stokes A, Ragunathan S et al. Mag. Res. Med. 2021 (under review)

Spiral SAGE MRI

Stokes A, Ragunathan S et al. Mag. Res. Med. 2021 (under review)

Summary

- Advantages of SAGE over single echo DSC MRI
 - Combined DCE/DSC information
 - Vessel size index / mean vessel diameter
- SMS/MB + Parallel Imaging
 - Same spatiotemporal coverage as clinical DSC MRI
- SAGE applications to fMRI for improved BOLD CNR
- coverage

Non-Cartesian implementations of SAGE for efficient k-space

Acknowledgements

Barrow Neurological Institute Dr. Chad Quarles

- Dr. Laura Bell
- Dr. Ashley Stokes
- Dr. Natenael Semmineh
- Dr. Zhiqiang Li
- Lori Steffes
- Sharmeen Maze
- **Philips Healthcare**
- Dr. Melvyn Ooi
- Dr. Ryan Robison

Research Support

- NIH
- Philips Healthcare

THANK YOU

