

Department of Radiation Oncolog Moffitt Cancer Center Tampa, FL, USA

1

Disclosure

I have no actual or potential financial conflicts of interest to disclose.

MOFFITT

• Emission is isotropic

POSSIBLE SCINTILLATORS:

Image: Eljen Technology Plastic Scintillators

Photomultiplier tube (PMT) or photodiode (PD) is used to convert optical signal to electrical signal read by electrometer

Challenge: Isolating Scintillation from Cherenkov

Cherenkov intensity measured is dependent on:

- AngleMaterial(s)
- Energy
- Length of cable irradiated

Cherenkov is removed from scintillation signal thru:

- Subtraction of Cherenkov in background optical cable
- Spectral methods of calibration (Guillot et al, Med Phys 38(4) 2011

• Electrons: ~12% of the signal

7

Cameras Make Wire-Free Measurements Possible 😡

		A Brief History of Plastic Scintillators in RT	
Fiber-based point detectors		1992 – Beddar <i>et al.,</i> Water-equivalent plastic scintillation detectors for high-energy beam dosimetry: 1. Physical characteristics and theoretical considerations, Phys Med Biol 37(10)	
		1999 – Letourneau <i>et al.,</i> Miniature scintillating detector for small field radiation therapy, Med Phys 26(12)	
		2011 – Guillot et al., Spectral method for the correction of the Cerenkov light effect in plastic scintillation detectors: A comparison study of calibration procedures and validation in Cerenkov light-dominated situations, Med Phys 38(4)	
		2015 – Underwood et al., Application of the Exradin W1 scintillator to determine Ediode 60017 and microdiamond 20019 correction factors for relative dosimetry within small MV and FFF fields, Phys Med Biol 60(17)	
Remote camera systems		2019 – Tendler <i>et al.,</i> Rapid Multisite Remote Surface Dosimetry for Total Skin Electron Therapy: Scintillator Target Imaging, Int J Radiat Oncol Biol Phys, 103(3)	
	•	2020 – Alexander <i>et al.,</i> Scintillation imaging as a high-resolution, remote, versatile 2D detection system for MR-linac quality assurance, Med Phys, 47(9)	< 1000 C
LO			

Advantages of Plastic Scintillator Dosimeters Water equivalence **Exradin W2 Scintillator** Energy independer • Nonmagnetic Angular independe ٠ materials! ٠ Dose linearity Ion Chamber Dose rate independence ٠ Near temperature independence ٠ Resistant to radiation damage ٠ Diode <1mm spatial resolution ٠ Real-time (~ns temporal resolution) • Does not perturb small field dose • distributions "Virtually invisible to the beam, the W2 provides less uncertainty with fewer correction factors, - Exradin® W2 Scintillator promotional materials, https://www.standardimaging.com/exradin-detectors/scintillators 11 Commercially Available Systems: Exradin W1 and W2 😡 ε 7

Small 1mm x 1mm scintillator is an excellent choice for measurement

Image source: Carrasco et al., Med Phys 42(1), 2

Exradin W1

e: Galavis et al., Med Phys 46(5), 2019

Exradin W2

Exradin W2

(1mm x 3)

Image source: Lacroix et al., Med Phys 35(8), 2008

Wireless scintillation *in vivo* dosimetry during TSET with remote intensified CMOS camera system.

Source: Tendler et al., Int J Radiat Oncol Biol Phys, 2019

Air Cavities and Dose in a Magnetic Field

M

Monte Carlo simulation conducted in GEANT 4 ver. 8.1

- Effects are most pronounced at high-low density media interfaces
- Lorentz forces curl the electron paths as they are liberated from the solid medium and enter the air cavities
- Have to consider how a detector perturbs the phantom

Source: Therriault-Proulx et al., Radiat Meas 116, 2018

• Directional Cherenkov signal is affected by B field

- Isotropic scintillation signal is not
- Robust noise removal is possible

Scintillators remain an excellent choice for measurement of small fields, even in MR-linacs.

MR-Linac MLC Shifts Using Scintillating Screen 🖗

TABLE II. Measured vs programmed MLC shifts.

		Discrep	oancy
Programmed shift (mm)	Measured shift (mm)	mm	%
Scintillation Screen			
0.50	0.44	-0.06	-12
1.00	0.92	-0.08	-8
2.00	2.02	0.02	1
3.00	3.02	0.02	1
IC profiler-MR			
0.50	0.71	0.21	42
1.00	1.20	0.20	20
2.00	2.03	0.03	1
3.00	2.69	-0.31	-10

- MLC shifts 0.5mm-3mm
- Scintillator sensitive to shifts ≥ 0.5mm
- Scintillator average discrepancy: 0.04mm
- IC Profiler-MR average discrepancy: 0.19mm
- IC Profiler-MR limited by detector array resolution

Source: Alexander et al., Med Phys 47(9), 2020

Visual Isocenter Position Enhanced Review (VIPER)

Manufacturer daily QA phantom Prototype daily QA phantom

Prototype daily QA phantom in manufacturer jig

Source: Alexander et al., Med Phys (Accepted, 2021)

Visual Isocenter Position Enhanced Review (VIPER)

iCMOS camera system mounted on wall at foot of the couch

Source: Alexander et al., Med Phys (Accepted, 2021)

7/21/2021

Learning Objectives

7/21/2021

Summary: Scintillation Approaches to MR-Linac QA

- Fiber-based scintillation detectors have been shown to perform well in magnetic fields
 - Good choice for small-field measurements on MR-Linac
 - Commercial products available
- Remote camera acquisition of scintillation has been used for *in vivo* wireless dosimetry in TSET
- Remote camera acquisition of scintillation has been implemented in MR-Linac QA tasks

Patient QA Needs In Adaptive Radiotherapy

- Current practice:
 - ArcCheck-MR measurement for every initial patient plan
 - Secondary dose calculation comparison for each adaptive plan (with patient on the table)
- Ask ourselves, is it <u>really</u> necessary to implement more extensive patient QA?
- Opinion: It is more prudent to focus on rigorous commissioning, and efficient, regular, machine QA tasks
- Scintillation-based dosimetry is a promising tool that could be developed to streamline machine QA

34

