Cavitation Control in Burst Wave Lithotripsy of Kidney Stones: A Delicate Balance

Adam Maxwell, PhD

Department of Urology, University of Washington School of Medicine Center for Industrial and Medical Ultrasound, Applied Physics Laboratory, University of Washington

AAPM 2021

UNIVERSITY of WASHINGTON

SonoMotion

- Equity
- Consultancy

SonoMotion has licensed technology related to this work from the University of Washington for commercialization.

¹Lingeman JE. J Urol 2004;**172**:1774. ²Matlaga, BR J Urol 2009;**181**:152-2156.

Shock Wave Lithotripsy (SWL)

• High-amplitude shock waves noninvasively fragment kidney stones into passable fragments.

• In a clinical setting, shock wave lithotripsy has moderate stone free rates (60-70%)

• SWL is no longer the most common procedure for stones – it has been overtaken by ureteroscopy

Burst Wave Lithotripsy (BWL)

Sinusoidal focused ultrasound pulses to achieve stone fragmentation

Burst Wave Lithotripsy

Shock Wave Lithotripsy

Treatment Progression

Zhu, Zhong et al, UMB 2002

Burst Wave Lithotripsy

Maxwell et al, J Endourol 2019

Burst Wave Lithotripsy

170 kHz 285 kHz 800 kHz 1 mm cm cm

Stone fracture mechanisms

Cavitation in burst wave lithotripsy produces three dominant effects:

Cavitation in burst wave lithotripsy produces three dominant effects:

1. Cavitation on the stone produces erosion of the stone.

Acoustic cavitation

Cavitation in SWL

Inertial Cavitation

- Large bubble expansion
- Violent collapse
- Bubble microjetting
- Shock wave emission

Photo by Larry Crum

UNIVERSITY of WASHINGTON

Cavitation in stone fracture

Surrounding the stone by hydrogel instead of water reduces fragmentation

Parameters:

Frequency = 170 kHz Pulse duration: 20 cycles Pulse rate = 10 Hz Focal Pressure: 7 MPa

UNIVERSITY of WASHINGTON

Cavitation in stone fracture

Pressure threshold for fracture is independent of stone composition

Human kidney stone	Artificial kidney stone composition ^a	Tensile strength (MPa)	
		Human stones	Artificial stones
MAPH/CA	66 wt% BegoStone	0.6–1.3	1.2 ± 0.08
UA	72 wt% BegoStone	1.2 - 3.6	2.3 ± 0.16
Cystine	73 wt% BegoStone	1.3 - 3.7	2.5 ± 0.18
Oxalate	82 wt% BegoStone	3.1 - 5.2	4.2 ± 0.29
CHPD	81 wt% BegoStone	3.0-4.8	4.0 ± 0.28

Nyame et al J Endourol 2015

These data suggest cavitation threshold rather than tensile stress threshold limits onset of fracture.

Cavitation in stone fracture

High-speed photography

Direct observations of cavitation have been made

- High speed photography
- Ultrasound detection

Doppler US imaging

Cavitation in burst wave lithotripsy produces three dominant effects:

1. Cavitation on the stone produces erosion of the stone

2. Cavitation blocks ultrasound waves and reduces stone fracture.

Simulated cavitation and acoustic shielding

- Cavitation bubbles in urine/tissue cause shielding (scattering of acoustic wave)
- **Result:** up to 90% of the acoustic energy does not reach the stone

Maeda et al. JASA 2018; 144(5):2952-61.

Effect of water gas concentration on fragmentation

Water O₂ saturation: 15-60% (regulated by degassing system)

Cavitation in vitro

• Urine gas partial pressure¹:

 $- P_0 = 537 \text{ mmHg} \sim 71\%$ saturation

Gas composition in liquids (by volume %):

- Water:trace CO_2 ,68% N_2 ,31% O_2 - Blood:70% CO_2 ,2% N_2 ,28% O_2 - Urine:70-80% CO_2 ,10-20% N_2 <10% O_2

¹Chaigneau and LeMoan. CR Acad Sci Ser D 1968

UNIVERSITY of WASHINGTON

Matching cavitation *in vitro*

- Pressure threshold for cavitation clouds in BWL exposures
- Measured in fluid space of tissue phantom *in vitro* vs. gas concentration in deionized water

Matching cavitation *in vitro*

- Pressure threshold for cavitation clouds in BWL exposures
- Measured in fluid space of tissue phantom *in vitro* vs. gas concentration in deionized water

Irrigation Model

Randad et al J Endourol 2019;33(5):400-6.

UNIVERSITY of WASHINGTON

Cavitation in burst wave lithotripsy produces three dominant effects:

- 1. Cavitation on the stone produces erosion of the stone.
- 2. Cavitation blocks ultrasound waves and reduces stone fracture.
- 3. Cavitation in tissue produces injury to the tissue.

Detection of cavitation effects in vivo (BWL)

MRI used to quantify volume of lithotripsy injury

May et al. J Endourol 2017;31(8):786-92.

Handa *et al.* Urolithiasis 2017; 45:507-13.

Active bubble detection by power Doppler

Peak Doppler power in ROI relative to average background power

- With cavitation observed: 28.6 dB
- Without cavitation observed:

6.4 dB

(11.2 - 51 dB)(3.5-17.6 dB)

Maxwell et al Ultrasound Med Biol 2021 (In Press)

UNIVERSITY of WASHINGTON

Pressure levels for cavitation in tissue

10 Measurement of tissue cavitation thresholds in pigs with stones. (MPa) 8 **Cavitation pressure** 6 • Average pressure range for cavitation was 5.8 – 8.1 MPa 2 • Pressure significantly greater with N=6N=4 N=6N=5PRF = 10 Hz vs 40 Hz0 Sham Stone Sham Stone **PRF: 40 Hz PRF: 10 Hz**

* (p<0.01) **(p<0.005)

Maxwell et al Ultrasound Med Biol 2021 (In Press)

Cavitation in burst wave lithotripsy produces three dominant effects:

- 1. Cavitation on the stone produces erosion of the stone
- 2. Cavitation blocks ultrasound waves and reduces stone fracture.
- 3. Cavitation in tissue produces injury to the tissue.

Methods to detect and confine cavitation to the stone can make BWL safer and more effective

Acute clinical simulation

- Treatment of 6-7 mm COM stones in renal pelvis or calyx (n=5)
- Mean 87±17% of mass <2mm fragments

Stone Size	% Pass Naturally	
≤ 4 mm	78%	
5 – 7 mm	60%	
> 7 mm	39%	

Stone 2

cm

UNIVERSITY of WASHINGTON

Stone 1

Acute Stone Model Pigs - Injury

- No parenchymal injury found in any kidney
- Minor petechial hemorrhage to mucosal wall

Gross Image

H&E Histology

UNIVERSITY of WASHINGTON

Maxwell *et al* J Endourol 2019;33(10):787-92

Mechanisms of SWL+BWL: Cavitation

 Modulation of acoustic parameters can control cavitation and maximize energy delivery

Maeda and Maxwell Phys Rev Appl 2021

Cavitation in burst wave lithotripsy produces three dominant effects:

- 1. Cavitation on the stone produces erosion of the stone.
- 2. Cavitation blocks ultrasound waves and reduces stone fracture.
- 3. Cavitation in tissue produces injury to the tissue.

Methods to detect and confine cavitation to the stone can make BWL safer and more effective

Thank you

This work was supported by:

National Institute of Diabetes and Digestive and Kidney Diseases K01 DK104854 and P01 DK043881