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Outline

• Sparse view

• Ring artifacts

• Metal artifacts

• Scatter estimation

• Motion compensation

• 3D fluoroscopy (3D + time)
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
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but…
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but…
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Haltmeier, C. Kolbitsch,  M. Kachelrieß, and M. Dewey. A U-Nets Cascade for Sparse 
View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Ring Artifact Reduction: Literature
• Correction in sinogram/rawdata domain:

– Nauwynck et al., Ring Artifact Reduction in Sinogram Space Using Deep Learning, 
Proc. CT Meeting 2020:486–489, 2020

• Correction in image domain:

– Chang et al ., A Hybrid Ring Artifact Reduction Algorithm Based on CNN in CT 
Images, Fully 3D 11072:1107226, 2019

– Chao et al., Removal of Computed Tomography Ring Artifacts via Radial Basis 
Function Artificial Neural Networks, Phys. Med. Biol. 64(23):235015, 2019

– Kornilov et al., Deep Neural Networks for Ring Artifacts Segmentation and 
Corrections in Fragments of CT Images, 28th FRUCT conference:181-193, 2021

– Wang et al., Removing Ring Artifacts in CBCT via GAN with Unidirectional Relative 
Total Variation Loss, Neural Computing and Applications 31(9):5147-5158, 2019

– Lv et al., Image Denoising and Ring Artifacts Removal for Spectral CT via Deep 
Neural Network, IEEE Access 8:225594-225601, 2020 

• Correction in both, sinogram/raw-data and image domain:

– Fang et al., Comparison of Ring Artifacts Removal by Using Neural Network in 
Different Domains, MIC, 2019

– Fang et al., Removing Ring Artefacts for Photon-Counting Detectors Using Neural 
Networks in Different Domains, IEEE Access 8:42447-42457, 2020 
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Ring Artifact Reduction: Comments
• Correction in sinogram/rawdata domain:

– Nauwynck et al. (2020) – Results are ok. The method can, however, not correct 
low-frequency ring artifacts.

• Correction in image domain:

– Chang et al. (2019) – Strange mixture of CNN and classical method. New artifacts 
are introduced.

– Chao et al. (2019) – It remains unclear how the artifact areas are segmented. Only 
zoom-ins show some improvements.

– Kornilov et al. (2021) – Theoretically sound, however, no reasonable images are 
presented.

– Wang et al. (2019) – The results of all correction methods look the same 
(suboptimal gray scale windowing).

– Lv et al. (2020) – The question arises why the method to generate the ground-truth 
data is not directly used for correction.

• Correction in both, sinogram/raw-data and image domain:

– Fang et al. (2019) – The results shown are interesting. However, there are no 
measuremed data processed.

– Fang et al. (2020) – The results are good. Probably it is the best method of this 
slide’s list.
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T

• Clean data from the AAPM Low Dose CT Grand 
Challenge.

• Ring artifacts are simulated by adding stripes in the 
sinogram data. 
– Slope and offset model in log domain

• The data were split into training (4800 images), 
validation (600 images) and testing datasets (526 
images) and an MSE loss function is used.

• Simulate ring artifacts 
– slope and offset model in log domain
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Fang, Li, and Chen. Removing Ring Artefacts for Photon-Counting Detectors Using Neural Networks 
in Different Domains. IEEE Access 8:42447-42457, 2020.
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Fang, Li, and Chen. Removing Ring Artefacts for Photon-Counting Detectors Using Neural Networks 
in Different Domains. IEEE Access 8:42447-42457, 2020.

Wavelet projection domain

Wavelet polar image domain

U-net image domain

U-net projection domain

U-net polar image domain

U-net in both domains
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MAR Examples
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MAR Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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Deep Scatter Estimation

???

In real time?
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationGround Truth
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J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan
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J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Conclusions on DSE
• DSE needs about 3 ms per CT and 10 ms per CBCT 

projection (as of 2020).

• DSE is a fast and accurate alternative to MC simulations.

• DSE outperforms kernel-based approaches in terms of 
accuracy and speed.

• Facts:
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE generalizes to all anatomical regions.

– DSE works for geometries and beam qualities differing from training.

– DSE may outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.
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Deep Cardiac Motion Compensation

???



37

Deep PAMoCo
Network architecture

Spatial 
transformer 

module

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-
based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48, in press, 2021.

FCN-Layer output: two control points for a cubic spline: 
for k = –K, and for k = +K. The third control point at k = 

0 is (0, 0, 0), i.e. no deformation for the central PAR.

Initial volume
(with motion artifacts)

Final volume
(no motion artifacts)
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Results
Measurements, patient 1

C = 1000 HU
W = 1000 HU
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J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß. Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Results
Measurements, patient 2
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J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß. Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Results
Measurements, patient 3

N
o

 C
o

rr
e

c
ti

o
n

P
A

M
o

C
o

D
e

e
p

 P
A

M
o

C
o
Slice 1 Slice 2 Slice 3 Slice 4

C = 1100 HU
W = 1000 HU

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß. Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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4D CBCT MoCo with
Deep Image Registration?

• 4D CBCT refers to respiratory-gated CBCT images

• Due to gating, streak artifacts typically occur

• A motion compensation (MoCo) helps to warp the 
respiratory phases into a target phase. MoCo 
requires to estimate the motion vector fields (MVFs).

• MVF estimation uses deformable registration.
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Examples for CBCT MoCo
sMoCo

Standard Motion 
Compensation

3D CBCT
Standard

4D gated CBCT 
Conventional 

Phase-Correlated

acMoCo
Artifact Model-Based 
Motion Compensation

1 min shifted detector CBCT scan with about 12 respiratory cycles, displayed with 30 rpm.
Patient data provided by Memorial Sloan–Kettering Cancer Center, New York, NY. C = -200 HU,  W = 1400 HU

asMoCo: Li, Koong, and Xing, “Enhanced 4D cone–beam CT with inter–phase motion model,” Med. Phys. 51(9), 3688–3695, 2007.
acMoCo: Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for motion-compensated cone-beam CT 

in image-guided radiation therapy,” Med. Phys. 39(12):7603-7618, 2012.
acMoCo: Brehm, Paysan, Oelhafen, and Kachelrieß, “Artifact-resistant motion estimation with a patient-specific artifact model for 

motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.
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• Regularization

 Two Gaussian convolution
kernels

• Static target image

• Model to be deformed

• Find transformation vector 
field    , i.e. 

• Demons algorithm

 Displacement update      by 
intensity matching on linear 
approximation

Demons Deformable Registration

Position

Thirion, “Image matching as a diffusion process: An analogy with 
Maxwell’s demons,” Medical Image Analysis 2(3), 243–260, 1998.

Target

Model

Deformed model 
matching target
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VoxelMorph Deformable Registration

Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. and Dalca, A. V., “VoxelMorph: A Learning Framework for
Deformable Medical Image Registration,” IEEE Trans. Med. Imaging 38(8), 1788–1800, 2019.
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Demons vs. VoxelMorph

• Cost/loss functions of Demons and VoxelMorph are identical if 
we use the L2-norm for the vector field regularization and the 
MSE for the image similarity

• Demon’s hierarchical registration cascade corresponds to 
VoxelMorph’s hierarchical encoder/decoder stages.

• Both methods can be extended to estimate a diffeomorphic 
vector field, i.e. a differentiable and invertible vector field.

• Demons minimizes the cost function for every patient, while 
VoxelMorph learned to minimize it for the training parients and 
then applies its knowledge to other patients. 

• Demons may be slower than VoxelMorph (a thorough 
comparison is missing), but is certainly more reliable and 
predictable.
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Deep MoCo

4D FDK deep sMoCo
(VoxelMorph)

deep cMoCo
(VoxelMorph)

deep acMoCo
(VoxelMorph)

VoxelMorph trained on human 4D CT, smoothness constraint increased during training

Faster
computation

Less
artifacts

acMoCo
(Demons)
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Intervention goes Deep!
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Deep DSA

???

Without mask?
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Conventional DSA

Deep DSA

• Train on static cases where ground truth is conventional DSA

Methods
General principle

Concatenate

Conv k3s1p1- ReLU - Dropout

MaxPool 2x2

TrpConv k4s2p1 - ReLU - Dropout

− =

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.
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Conventional DSA

Deep DSA

• Train on static cases where ground truth is conventional DSA

• During inference CNN can be applied to both static and dynamic 
cases

Methods
General principle

Concatenate

Conv k3s1p1- ReLU - Dropout

MaxPool 2x2

TrpConv k4s2p1 - ReLU - Dropout

− =

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.
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Results

Original x-ray sequence

Ground truth DSA

CNN output

Artificially 
introduced 
stenosis?

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.

Due to a low amount of training data and a low 
variability of the training data available to us the 
results shown on this slide are not optimal, yet. 
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Fluoroscopy DSA (fluoro minus mask) Deep DSA (from fluoro only)

Deep DSA

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.

Due to a low amount of training data and a low 
variability of the training data available to us the 
results shown on this slide are not optimal, yet. 
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Conventional DSA 
infeasible due to

C-arm motion

Results
Bolus chase study
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Deep DSA at 𝐭 = 𝒕𝒂

Deep DSA at 𝐭 = 𝒕𝒂

E. Eulig, M. Kachelrieß, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". 
Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.
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???

At 2D+T dose?

Deep 3D+T Fluoroscopy
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either 2D+T fluoroscopy

or 3D tomography

High temporal resolution, but only 2D

Low temporal resolution, but 3D

3D+T 
tomographic 
fluoroscopy?
At low dose?

How???

Deep 3D+T Tomographic Fluoroscopy



60

How to Realize 3D+T Fluoroscopy
• Low dose by:

– Low tube current

– Very few projections (pulsed mode)

• Advantages of intervention guidance:
– Repetitive scanning of the same body region: changes are sparse.

– Interventional materials are fine structures (few voxels) of high 
contrast (metal).

Prior scan
400 projections

Intervention scan
16 projections Experimental setup

Pig in-vivo

B. Flach, J. Kuntz, M. Brehm, R. Kueres, S. Bartling, and M. Kachelrieß. “Low dose tomographic 
fluoroscopy: 4D intervention guidance with running prior.”, Med. Phys. 40:101909, 11 pages, October 2013.
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3D+T Image Guidance at 2D+T Dose
Stent Expansion in the Carotis of a Pig with Angio Roadmap Overlay

Dose of the yet unoptimized approach: 20 bis 50 µGy/s.

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). 
This work was further selected as the Editor's Pick for the Medical Physics Scitation site.
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3D+T Fluoroscopy at 2D+T Dose
Guide Wire in the Carotis of a Pig with Angio Roadmap Overlay

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). 
This work was further selected as the Editor's Pick for the Medical Physics Scitation site.

Dose of the yet unoptimized approach: 20 to 50 µGy/s. Obviously, 16 projections are too much.
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Method
Deep Tool Extraction (DTE), Feldkamp Recon (FDK), Deep Tool Reconstruction (DTR)

Input projections
at current time step

Patient-only projections
accumulated over past 

timesteps

Tool-only projections
at current time step

Sparse reconstruction 
of interventional tools

DTE

FDK

Segmentation of
interventional tools

DTR

FDK +

+

Patient-only
reconstruction

Combined 
reconstruction, 

final image

𝒖

𝒗

𝒙

𝒚

𝒙

𝒚

𝒙

𝒚

𝒙

𝒚

𝒖

𝒗

𝒖

𝒗

E. Eulig, J. Maier, N.R. Bennet, M. Knaup, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-aided CBCT image reconstruction 
of interventional material from four x-ray projections. SPIE Medical Imaging Conference Record, 113121L:1-7, March 2020.
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Zeego @ Stanford University
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E. Eulig, J. Maier, N.R. Bennet, M. Knaup, K. Hörndler, A. Wang, and M. Kachelrieß. Deep learning-aided CBCT image reconstruction 
of interventional material from four x-ray projections. SPIE Medical Imaging Conference Record, 113121L:1-7, March 2020.

Zeego Measurements
with Just 4 Projections

Ground truth (measurements from 400 projections)

Neural network output (from just 4 projections)

Loop through slices reconstructed
from just 4 projections without AI:

Stent 
examples:
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Thank You!

This presentation is available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


