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Outline

e Sparse view

* Ring artifacts

« Metal artifacts

e Scatter estimation
 Motion compensation

« 3D fluoroscopy (3D + time)




Sparse View Restoration Example

(a) Depth-wise receptive field Ground truth 2 Total variation Proposed

(a) 48 view

=) Max pooling ™ Avg unpooling Conv Receptive field

2
K
>
3
(o]
)

X : Input Y : Label X - ¥ : Composite

(c) 96 view

= 2x2 Max pooling 2x2 Avg unpooling 1x1 Con 3x3 Conv, bnorm, RelU

Figure 1. The proposed deep residual learning architecture for sparse view CT reco

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT
Reconstruction via Persistent Homology Analysis. ArXiv 2016.




Proposed

Ground truth X : Input Total variation

(a) 48 view

(b) 64 view

(c) 96 view
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Sparse CT Recon with
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1x1-Convolution - Skip-Connections/Concatenation

U-NeRERIVARARCL )

A. Kofler, M. Haltmeier, C. Kolbitsch, M. KachelrieR, and M. Dewey. A U-Nets Cascade for Sparse dkfz
View Computed Tomography, MICCAI 2018 o



Ring Artifact Reduction: Literature

« Correction in sinogram/rawdata domain:
— Nauwynck et al., Ring Artifact Reduction in Sinogram Space Using Deep Learning,
Proc. CT Meeting 2020:486-489, 2020
« Correction in image domain:

— Chang et al ., A Hybrid Ring Artifact Reduction Algorithm Based on CNN in CT
Images, Fully 3D 11072:1107226, 2019

— Chao et al.,, Removal of Computed Tomography Ring Artifacts via Radial Basis
Function Artificial Neural Networks, Phys. Med. Biol. 64(23):235015, 2019

— Kornilov et al., Deep Neural Networks for Ring Artifacts Segmentation and
Corrections in Fragments of CT Images, 28" FRUCT conference:181-193, 2021

— Wang et al., Removing Ring Artifacts in CBCT via GAN with Unidirectional Relative
Total Variation Loss, Neural Computing and Applications 31(9):5147-5158, 2019

— Lv et al., Image Denoising and Ring Artifacts Removal for Spectral CT via Deep
Neural Network, IEEE Access 8:225594-225601, 2020

« Correction in both, sinogram/raw-data and image domain:

— Fang et al., Comparison of Ring Artifacts Removal by Using Neural Network in
Different Domains, MIC, 2019

— Fang et al., Removing Ring Artefacts for Photon-Counting Detectors Using Neural
Networks in Different Domains, IEEE Access 8:42447-42457, 2020



Ring Artifact Reduction: Comments

« Correction in sinogram/rawdata domain:

— Nauwynck et al. (2020) — Results are ok. The method can, however, not correct
low-frequency ring artifacts.

« Correction in image domain:

— Chang et al. (2019) — Strange mixture of CNN and classical method. New artifacts
are introduced.

— Chao et al. (2019) — It remains unclear how the artifact areas are segmented. Only
zoom-ins show some improvements.

— Kornilov et al. (2021) — Theoretically sound, however, no reasonable images are
presented.

— Wang et al. (2019) — The results of all correction methods look the same
(suboptimal gray scale windowing).

— Lv et al. (2020) — The question arises why the method to generate the ground-truth
data is not directly used for correction.

« Correction in both, sinogram/raw-data and image domain:

— Fang et al. (2019) — The results shown are interesting. However, there are no
measuremed data processed.

— Fang et al. (2020) — The results are good. Probably it is the best method of this
slide’s list.



Removing Ring Artefacts for Photon-Counting
Detectors Using Neural Networks in

Different Domains

WEI FANG ", LIANG LI, (Senior Member, IEEE), AND ZHIQIANG CHEN

* Clean data from the AAPM Low Dose CT Grand
Challenge.

* Ring artifacts are simulated by adding stripes in the
sinogram data.

— Slope and offset model in log domain

 The data were split into training (4800 images),
validation (600 images) and testing datasets (526
Images) and an MSE loss function is used.

e Simulate ring artifacts
— slope and offset model in log domain
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FIGURE 3. The diagram of ring artefacts removal in projection domain.
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FIGURE 4. The diagram of ring artefacts removal in polar coordinate system.
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FIGURE 5. The diagram of ring artefacts removal using a comprehensive model.

Fang, Li, and Chen. Removing Ring Artefacts for Photon-Counting Detectors Using Neural Networks dkf
in Different Domains. IEEE Access 8:42447-42457, 2020. ZC



Wavelet projection domain

Wavelet polar image domain

U-net image domain

U-net projection domain

U-net polar image domain

U-net in both domains

Fang, Li, and Chen. Removing Ring Artefacis-ron I'IIUI.UI'UUIILIIIQ UTLTLLUID UDIY INTUTadl INCLWUIT RS
in Different Domains. IEEE Access 8:42447-42457, 2020.




Deep Neural Network for CT Metal Artifact
Reduction with a Perceptual Loss Function

Gjesteby, 2017

Reducing Metal Streak Artifacts in CT Images via
lot Results

Deep Lea

+ Takes 32x32 input patch from NMAR image and
produces 20x20 output patch

+ Very basic CNN

Gjesteby, 2019 Gjesteby, 2019

Gjesteby, 2019

+ Same network as in previous work

« Detail image is the high-pass filtered original image

« Detail image and NMAR image are both put as inputs
in 2 streams that converge later in the CNN

+ Network uses residual error and cost function is a
combination of MSE and perceptual loss

e | | Aot

Metal artifact reduction on cervical CT

images by deep residual learning Zhang, 2018

Zhang, 2018

+ Metal is placed in real CT images. Artifacts are
created by forward and back-projecting soft tissue,
bone, and metal

* Network nput s patch of artifactimage /and output

P - is the residual, i.6.R= - G

; U ) + Loss function is MSE of the rosldnal

+ Learning the residual is found to be better than

learning the artifact-free image (no images)
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Artifact Reduetion Using Deep-Learning
d Sinogram Completion: Initial Results

Claus, 2017

Trained and evaluated on simulated data with metal
circlein the center (no other positions tested)
+ Data are heavily simplified (random ellipses)!
+ Inputs are 2 81x21 sized patches from the sinogram
next to metal patch. Won't work for complex metals

Relatively small network (4 layers)
T Se S
@e@ @

Deep Learning based Metal Inpainting in the
Projection Domain using additional Neighboring
Projection Information

Gottschalk, 2020

QQQQQQ

Gottschalk, 2020

« U-Net corrects CBCT projections
* Has metal mask and 10 neighbouring projections as
additional input channels

Liao, 2019

Firstreplaces metal trace in the projections (.. fixed
angle but varying £ and 2)

Wd-Ae Lin?, Zhimin

and

Then the j into
uses a second network to improve those
Both networks are GANs with a U-Net generator and
CNN discriminator

Uses a Mask Pyramid to ensure the metal mask is
seen by all stages of the U-Net

Data are regular CT scans with metal traces from
other patients imposed on them

A dual-stream deep convolutional network for reducing metal
streak artifacts in CTimages

Gjesteby, 2018 Gjesteby, 2018

e e . + Inputs for the network are the NMAR image and the ; e
high-pass filtered original image

- Corrects streaks after NMAR

+ Loss function is MSE or perceptual loss (from VGG
network)

+ MSE shows over-smoothing

+ Trained on simulated data

+ Each residual unit learns residual error

[Metal artitact reduction for practical dental computed tomography by g E .
improving interpolation-based reconstruction with deep learning

g, i D nd Her

Xing, 2019

+ Perform initial LIMAR to obtain images with
interpolation artifacts

5 ~ ~ ~
. v - o * Agply et 1o pre-corrected images to reduce
2 b & < artifacts
- > + Network minimizes L2-norm loss outside of the metal
» . i o regions
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Convolutional Neural Network Based
Metal Artifact Reduction in X-Ray
Computed Tomogra

Yu, 2018

+ Training data are generated from clinical data with
metal artifacts added afterwards through
v 8 back

Yu, 2018

+ Cost function is MSE
CNN gets patches from the artifact, BHC corrected,
and LI corrected image as input, produces corrected
patche:

+ Prior image is generated from CNN result by
segmenting water and setting it to the average value
of all water pixels and leaving bone intact

+ Metal trace in the uncorrected sinogram is replaced
with values from the prior image

+ Having different types of MAR as input improves.
results

Gottschalk, 2019

+ Corrects C-Arm projection data

+ Data were obtained by placing metal on top of human
knee cadavers

+ Loss function is MSE

+ Networks are based on U-Net with additional skip
connection from original image to output

+ Basic network can be und i implicitly segment the
metal for the Mask-MAR:

+ Providing a metal mask slgnlﬁcantlylmpfoves
results

+ Results are blurred slightly

Ghani, 2019 Ghani, 2019

Fast Enhanced CT Metal Artifact Reduction using
Data Domain Deep Learning

+ Metal trace is replaced CGAN

+ Uses transfer learning from training data to real data;
not described in depth

+ Not applied to medical images

Lin, 2019

+ Input are LI pre-corrected sinograms/images

+ Firstimproves the sinograms through a U-Net with
mask pyramid (so all parts of the U-Net see the mask)

+ Then applies FBP (Radon Inversion Layer) and uses
the result as input for a second U-Net, which
improves itin image domain

+ Unclear how/if the LI and CNN results are combined




MAR Example

 Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on
simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output
32@64x 64 32@64x 64 32@64x 64 32@64x 64 1@64x 64
)
UL .

Convolution Convolution Convolution Convolution .
+ RelU +RelU +RelU +RelU Convolution

» followed by segmentation into tissue classes

« followed by forward projection of the CNN prior and
replacement of metal areas of the original sinogram

« followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray dkfz
@

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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Deep Scatter Estimation

277

In real time?




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

* Simulating a large numb~ 5 ries well
our
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Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

g

Downsamplin e‘- -\-_omO

and applicatio. 50 Upsampling
of operator O to or_|g|nal
T(p) Size
48 x 32 x 160
24 x 16 x 320

O- 3 x 3 Convolution, RelLU

12 % 8 x 480 ®» 1x1 Convolution, ReLU
—0O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

Projection data

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
&

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Results on Simulated Projection Data

Primary Scatter ground (Kernel = GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT) I GT
View #1 3 L. 70
earn mean
al absolute
percenta e o Peiceiiage percentage
error
. - over
View #2 aII 5 all
projections ' projections
View #3 l
e ‘ ]
View #5
C=0%, W=50% C=0%, W=50

DSE trained to estimate scatter from primary plus scatter: High accuracy dk‘fz.



Reconstructions of Simulated Data

; Kernel-Based Hybrid Scatter Deep Scatter
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C=0HU, W=1000 HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for
Measured Data (120 kV)

DKFZ table-top CT

Measurement to be corrected

| &

X-ray source

1

N | Detector
A

* Measurement of a head
phantom at our in-house

table-top CT. CoIIimatorI (’\\

e Slit scan measurement o ——
serves as ground truth. X-ray source I L

Ground truth: slit scan

Detector

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Conclusions on DSE

 DSE needs about 3 ms per CT and 10 ms per CBCT
projection (as of 2020).

e DSE Is a fast and accurate alternative to MC simulations.

 DSE outperforms kernel-based approaches in terms of
accuracy and speed.

* Facts:
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE generalizes to all anatomical regions.
— DSE works for geometries and beam qualities differing from training.
— DSE may outperform MC even though DSE is trained with MC.

 DSE is not restricted to reproducing MC scatter
estimates.

« DSE can rather be trained with any other scatter
estimate, including those based on measurements.
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Deep PAMoCo

Network architecture

NxN 64
8 8 16 16 16 Fully

Ni2 x Ni2 connected gy /%t S_12 o
16 32 232 neurons ’

N/4 x N/4
32 64 64
N/8 x N/8

Initial volume
(with motion artifacts)

L
f

Final volume
(no motion artifacts)

-

.'_'t

64 64 64

N/16 x N/16

’ 3 x 3 x 3 Convolution, Batch norm, ReLU ' 2 x 2 x 2 Max pooling :}} Flatten "“ Dropout (25 %)

FCN-Layer output: two control points for a cubic spline:
for k ==K, and for k = +K. The third control point at k =
0is (0, 0, 0), i.e. no deformation for the central PAR.

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie. Deep learning- dkfz
o

based coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48, in press, 2021.



Results

Measurements, patient 1
Slice 1 Slice 2 Slice 3 Slice 4

e

No Correction
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C =1000 HU
W = 1000 HU

Deep PAMoCo

-

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. KachelrieR. Coronary artery motion compensation for

short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020



Results

Measurements, patient 2
Slice 1 Slice 2 Slice 3 Slice 4

No Correction

PAMoCo

Deep PAMoCo

C =1000 HU
W = 1000 HU

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrie3. Coronary artery motion compensation for dkfz
o

short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020.



Results

Measurements, patient 3
Slice 1 Slice 2 Slice 3 Slice 4
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No Correction

PAMoCo

C =1100 HU
W = 1000 HU

Deep PAMoCo

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. KachelrieR. Coronary artery motion compensation for

short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020



4D CBCT MoCo with
Deep Image Registration?

4D CBCT refers to respiratory-gated CBCT images
Due to gating, streak artifacts typically occur

A motion compensation (MoCo) helps to warp the
respiratory phases into a target phase. MoCo
requires to estimate the motion vector fields (MVFs).

MVF estimation uses deformable registration.




Examples for CBCT MoCo

3D CBCT 4D gated CBCT sMoCo acMoCo
Standard Conventional Standard Motion Artifact Model-Based
Phase-Correlated Compensation Motion Compensation

sMoCo: Li, Koong, and Xing, “Enhanced 4D cone—beam CT with inter—phase motion model,” Med. Phys. 51(9), 3688-3695, 2007.
cMoCo: Brehm, Paysan, Oelhafen, Kunz, and KachelrieB, “Self-adapting cyclic registration for motion-compensated cone-beam CT
in image-guided radiation therapy,” Med. Phys. 39(12):7603-7618, 2012.
acMoCo: Brehm, Paysan, Oelhafen, and KachelrieB, “Artifact-resistant motion estimation with a patient-specific artifact model for
motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.

Varl Gn 1 min shifted detector CBCT scan with about 12 respiratory cycles, displayed with 30 rpm.
Patient data provided by Memorial Sloan—Kettering Cancer Center, New York, NY. C =-200 HU, W = 1400 HU z.



Demons Deformable Registration

Static target image s * Regularization
Model to be deformed m — Two Gaussian convoluton
- : kernels ; Fusi
Find transformation vector Ciuid; Giftusion
field T,i.e. s=moT T ¢ Gaigtusion * (T 0 exp (Giuia * 1))

Deformed model

Demons algorithm matching target

— Displacement update u by
intensity matching on linear
approximation

m — 8
V5] + (m - s)°

Intensity )

Thirion, “Image matching as a diffusion process: An analogy with
Maxwell’s demons,” Medical Image Analysis 2(3), 243—-260, 1998.




VoxelMorph Deformable Registration

Moving 3D Image (m)

Moved (m e ¢)

Fixed 3D Image (f) ‘ Triii::r)m

Auxiliary Information (Optional)

Fixed Image Moving Image : Moved Segmentations
Segmentations (s;)  Segmentations (s;,) : (Sm =)

Spatial
Transform

Balakrishnan, G., Zhao, A., Sabuncu, M. R., Guttag, J. and Dalca, A. V., “VoxelMorph: A Learning Framework for
Deformable Medical Image Registration,” IEEE Trans. Med. Imaging 38(8), 1788—1800, 2019. ZO



Demons vs. VoxelMorph

« Cost/loss functions of Demons and VoxelMorph are identical if
we use the L,-norm for the vector field regularization and the
MSE for the image similarity

: 2 2
C —argmin [m(g) - £[5+ [V

« Demon’s hierarchical registration cascade corresponds to
VoxelMorph’s hierarchical encoder/decoder stages.

« Both methods can be extended to estimate a diffeomorphic
vector field, i.e. a differentiable and invertible vector field.

« Demons minimizes the cost function for every patient, while
VoxelMorph learned to minimize it for the training parients and
then applies its knowledge to other patients.

« Demons may be slower than VoxelMorph (a thorough
comparison is missing), but is certainly more reliable and
predictable.



Deep MoCo

AD EDK deep sMoCo deep cMoCo deep acMoCo acMoCo
(VoerMorph) (VoxelMorph) (VoerMorph) (Demons)

Faster Less
computation artifacts

VoxelMorph trained on human 4D CT, smoothness constraint increased during training dkfz.



Intervention goes Deep!



Deep DSA




Methods

General principle

Conventional DSA

Deep DSA

1y
« Train on static cases where ground truth is conventional DSA

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Methods

General principle

Conventional DSA

Deep DSA

|
»:II

l..*.,ll

It N [Nt
« Train on static cases where ground truth is conventional DSA

* During inference CNN can be applied to both static and dynamic

cases
E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



— Results

Original x-ray sequence

Ground truth DSA

Artificially
introduced
stenosis?

Due to a low amount of training data and a low
variability of the training data available to us the
results shown on this slide are not optimal, yet.

CNN output

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Deep DSA

Fluoroscopy DSA (fluoro minus mask) Deep DSA (from fluoro only)

-

\

Due to a low amount of training data and a low
variability of the training data available to us the
results shown on this slide are not optimal, yet.

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Results

Bolus chase study

Dynamic fluoroscopy

Conventional DSA
infeasible due to

C-arm motion

Conventional DSA

Deep DSA

Deep DSAatt=t¢,

Deep DSA att =¢,

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
®

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Deep 3D+T Fluoroscopy

227 o

At 2D+T dose? &+




Deep 3D+T Tomographic Fluoroscopy

either 2D+T fluoroscopy
q




How to Realize 3D+T Fluoroscopy
 Low dose by:
— Low tube current

— Very few projections (pulsed mode)

« Advantages of intervention guidance:

— Repetitive scanning of the same body region: changes are sparse.

— Interventional materials are fine structures (few voxels) of high
contrast (metal).

Pig in-vivo
Prior scan

400 projections

Intervention scan

16 projections

Experimental setup
B. Flach, J. Kuntz, M. Brehm, R. Kueres, S. Bartling, and M. KachelrieB. “Low dose tomographic

fluoroscopy: 4D intervention guidance with running prior.”, Med. Phys. 40:101909, 11 pages, October 2013. dkfz.



3D+T Image Guidance at 2D+T Dose

Stent Expansion in the Carotis of a Pig with Angio Roadmap Overlay

RES/8BIT
LAOIRAD -165
CRAN/CAUD 5

B 69 wW 5111
O 63 C 2977

Dose of the yet unoptimized approach: 20 bis 50 uGy/s.
This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR). dkfz
@

This work was further selected as the Editor's Pick for the Medical Physics Scitation site.



3D+T Fluoroscopy at 2D+T Dose

Guide Wire in the Carotis of a Pig with Angio Roadmap Overlay

Dose of the yet unoptimized approach: 20 to 50 pGy/s. Obviously, 16 projections are too much.
This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR).
dkfz.

This work was further selected as the Editor's Pick for the Medical Physics Scitation site.
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Deep Tool Extraction (DTE), Feldkamp Recon (FDK), Deep Tool Reconstruction (DTR)

|
|
o | - DTR
v y y
L, " L .
Tool-only projections Sparse reconstruction Segmentation of
at current time step of interventional tools interventional tools

S

Input projections
at current time step

: : :
7

¥ & /?; / y N /?\; §
i e
Patient-only projections Patient-only Combined
accumulated over past reconstruction reconstruction,
timesteps final image

E. Eulig, J. Maier, N.R. Bennet, M. Knaup, K. Horndler, A. Wang, and M. Kachelrie3. Deep learning-aided CBCT image reconstruction dkfz
o

of interventional material from four x-ray projections. SPIE Medical Imaging Conference Record, 1131211 :1-7, March 2020.



/eego @ Stanford University




Zeego Measurements
with Just 4 Projections

Ground truth (measurey

Neural network outp

N

g

e E A T ’
PRI

f—A." r
4

s
.

4

25
™

~

NI [T O Foriern w
Gadi bty v AT '
1 ’"—’.! o & Qh{
. "-‘..,-:".. - ) :‘ ‘\ ] ‘.“ o
Loop through slices reconstructed -~~~ Stent
from just 4 projections without AI: »;’»’}‘_-’5* examples:

E. Eulig, J. Maier, N.R. Bennet, M. Knaup, K.

o bt
of interventional material from four x-ray projections.




This presentation is available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by
RayConStruct® GmbH, Nirnberg, Germany.



