Contrast-Enhanced Mammography: Physics and QC Testing

THE OHIO STATE UNIVERSITY

Kevin Little, PhD, DABR, DABSNM, CIIP

Disclosures

- OSU has research agreements with Siemens Healthineers and Qaelum NV (unrelated to talk).
- Most of the QC I will discuss is for Hologic units because that is what we have at OSU.

Department of Radiology

Department of Radiology

Department of Radiology

THE OHIO STATE UNIVERSITY

CEM QC

2018 ACR QC Manual FAQ: Use manufacturer's QC manual for CEM

- Q. Our facility has a digital mammography unit that performs 2D and/or DBT imaging and <u>contrast enhancement</u> (imaging of an iodinated contrast agent using mammography equipment). Will we be allowed to use the ACR Digital Mammography QC Manual instead of our manufacturer's manual for QC of the 2D and DBT applications of our digital mammography unit and then follow our manufacturer's QC manual for contrast enhancement?
- A. Yes. The FDA has determined that facilities may use the manual for QC of the 2D and DBT applications of these units, and recommends that facilities follow manufacturer QC procedures for contrast enhancement applications.

THE OHIO STATE UNIVERSITY

Artifact Evaluation

THE OHIO STATE UNIVERSITY

 Hologic QC manual revision 010: must use **Manual** mode for CEM, unlike other target/filter combos, which use Auto-Time mode

Mode	kVp	mAs	Filter	Focal Spot
Manual	28	100	Rh	Large

Department of Radiology

- The CE2D modality is only compatible with Manual and Auto-Filter AEC modes.
- Hologic QC manual revision <010: Auto-Time mode instructed

Artifact Evaluation CEM QC ator Tools Biopsy Contrast -Standby Hologic: Viewing CEM images Hologic: Add View Contrast tab 0 QC tab Low-energy image Flat Field CEDM Subtraction image Split screen . Add ACR THE OHIO STATE UNIVERSITY THE OHIO STATE UNIVERSITY Department of Radiolog

Department of Radi

HVL	Nominal kVp setting Target Material Filter mAs Exposure measurements (mR): No aluminum filtration, E(0 _a) 0.2 mm of added AI, E(2) 0.3 mm of added AI, E(3) 0.4 mm of added AI, E(4) 0.5 mm of added AI, E(5) 0.6 mm of added AI, E(6) No aluminum filtration, E(0 _b) Upper exposure value (E _a) Corresponding AI thickness (t _b) Lower exposure value (E _b)	45 W Cu 100 73.045 73.11 72.98 46.77 2 30.87 4		Entrance exposure, rep • Hologic: • Add View • QC tab • ACR Phantom CEDM • Add	oroducibility, and AGD
THE OHIO STATE UNIVERSITY WERVER MEDICAL CENTER	Corresponding AI thickness (t_b) $E_{1/2} = E(0)/2$ Calculated HVL (mm AI)	4 36.52 3.19	Department of Radiology	THE OHIO STATE UNIVERSITY VENER MEDICAL CENTER	Department of Radiology

Entrance exposure, reproducibility, and AGD

- · Each acquisition will have a low- and high-energy exposure
- Set your meter's calculation/stop delay to the minimum, putting the dose from the three separate exposures (AEC pre-pulse, low energy, high energy) into the correct category.

Entrance exposure, reproducibility, and AGD

•	•				
Breast thickness (cm)	4	.2	4	.2	
Phantom	A	CR	AC	CR	
Acquisition Mode		CE	2D		
Acquisition mode	Lo	ΝE	High E		
Image Receptor	24	x29	24x29		
Nominal kVp setting	28		45		
Target Material	W		W		
Filter	Rh		Cu		
AEC mode	Auto-Filter		Auto-Filter		
Density control setting		0	0		
Measured HVL (mm Al)	0.5	514	3.191		
Breast Entrance Ex	posure a	nd AEC R	eproducit	oility	
	R	mAs	R	mAs	
Exposure #1	0.4777	112	0.0371	52	
Exposure #2	0 4811	112	0.0373	52	
Exposure #3	0.4754	112	0.0370	52	
Exposure #4	0.4755	112	0.0369	52	
Mean value	0 477	112.0	0.04	52.0	

Coefficient of variation 0.006 0.000 0.005 0.000

0.003 0.0 0.000

0.0

Standard deviation

Entrance exposure, reproducibility, and AGD

Avera	ge Glandular Dose	
Displayed average glandular dose (mrad)	118	30
Inv sq corrected skin exposure	0.48	0.04
Dose conversion factor, Tables 1-3 (mrad/R)	265.6	824.2
Computed average glandular dose (mrad)	126.8	30.6
% diff. disp. from meas.	-6.9%	-1.8%
Total average glandular dose (mrad)	15	7.4

Entrance exposure, reproducibility, and AGD

Alternatively, if your meter is not that fast or can't record multiple measurements, you can use the average R/mAs from your conventional exposure measurements and the mAs of each low-energy exposure to distribute the total exposure.

Note

Department of Ra

An ACR Phantom CEDM view includes both a low and a high energy exposure. If the measuring equipment does not allow for separating the low from the high exposure, then you can use the average R/mAs computed from form 8a and the mAs of the low energy exposure to distribute the accumulated exposure between the low and the high energy exposures.

THE OHIO STATE UNIVERSITY

Entrance exposure, reproducibility, and AGD

Average R/mAs from the conventional exposure measurements:

			R	mAs		
Mean value			0.480	112.8	→ 0.0042	258 R/mAs
	Total R	m	As	R	mAs	R
	0.5148	1	12	0.4769	52	0.0379
	0.5185	1	12	0.4769	52	0.0415
	0.5124	1	12	0.4769	52	0.0355
	0.5125	1	12	0.4769	52	0.0356

Entrance exposure, reproducibility, and AGD

Average R/mAs from the conventional exposure measurements:

Example comparison:

		Individual Exposures		Average R/mAs	
		Low E	High E	Low E	High E
	Computed average glandular dose (mrad)	126.8	30.6	126.7	31.0
1	Total average glandular dose (mrad)	157.4		157.7	

П

Department of Radi

Dual-energy subtraction

Resources

 W. F. Sensakovic, M. B. Carnahan, C. D. Czaplicki, S. Fahrenholtz, A. Panda, Y. Zhou, W. Pavlicek, B. Patel, "Contrast-enhanced Mammography: How Does It Work?" *Radiographics* 41(3), 829-839, 2021.

Department of Radiology

 M. Lobbes and M. S. Jochelson, ed. Contrast-Enhanced Mammography (Springer, Cham, Switzerland, 2019).

THE OHIO STATE UNIVERSITY