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Adaptive Radiotherapy (ART) Evolution
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Which? - radiotherapy response estimates (7]
El Naga, Wires, 2014
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Integrative radiobiological modeling ()

Tumor control (TCP)/Normal tissue complication (NTCP) are multi-factorial

and depend on: radiation dose and patients’ genomic (radiogenomics) and

imaging (radiomics) characteristics before & during radiotugapy
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Analytical NTCP Liver Modeling: Dose+ cytokines + imagi%

ALBI changes in liver cancer

MRI-DCE perfusion
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Outcome modeling by Machine learning (ML)

* Generative models

* Model class-conditional PDFs and prior probabilities
(Bayesian networks, Markov models)
« To predict you need to know the system

Input od output

e Discriminant models
« Directly estimate posterior probabilities (logistic
regression, neural networks, CNN, random forests, SVM)
* Predict without knowing the system

Input output

Tseng, Oncology, 2018

Deep vs conventional machine learning

Conventional “shallow” learning process

Features

Deep learning process

Deep leaning aigorithm

Learning task
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Zaidi & El Naga, Annu. Rev. Biomed. Eng, 2021




Multi-Objective Generative (Bayesian) Models

A MO-BN can be used to predict multiple radiation outcomes simultaneously, which provides opportunities
of finding appropriate treatment plans to solve the trade-off between competing risks.
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Radiogenomics modeling with deep ML
Local control prediction in lung cancer
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Deep Survival Radiomics model for Liver Cancer |
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IMulti-objective radiogenomics model with deep survival neural networks | @
DSNN prediction and comparison
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How to optimize RT adaptation decision with ML? (7))
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El Naga, ASTRO (Best of physics), 2016
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Adaptive Radiation Oncology Decision Making with Deep Learning | @
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Adaptive Radiation Oncology Decision Making with Deep Learning Il

GAN (Synthetic data) State-space transition (Environment) DQN (Agent)
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Quality assurance for Al/ML application in the clinic ()

hcceptance Testing
To ensure that the ML tool meets all applicable safety and performance
standards (prediction) and that it meets contractual specifications
* Manufacturer includes an acceptance test procedure with the ML tool
« Selection of evaluation endpoint and definition of performance
criteria (e.&, AUC);
« Selection of a benchmark data

Lommissioning
+ The process whereby the needed tool-specific data/parameters are
acquired and operational procedures are defined

« May include:

« Training data collection
« Developing procedures
« User training before first use

uality Assurance (QA)

+ Effort to ensure treatments are given accurately, safely and efficiently
according to established tests and evaluations

Fontinuing Quality Improvement (CQI)

« Effort that seeks to make treatments and operations better by
recognizing current weaknesses in the program, anticipating problems
before they happen, streamlining tasks and responding to changes in
practice

El Naga, Moran, Ten Haken, The Modern Technology of Radiation Oncology, V4, Van Dyke

17

|IVIL Accuracy versus interpretability (7]
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Deep Survival Radiomics model for Liver Cancer Il ()
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Wei et al, Physica Medica, 2021

[Miulti-objective radiogenomics model with deep survival neural networks Il
Interpretation with Grad-CAM
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Human-in-the loop: Pre/During Treatment BNs for LC and RP2 Prediction (W)
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Take home Messages

(7

* Artificial intelligence/machine learning offers new opportunities to

develop better understanding of oncology processes and improve its

workflow and especially decision support systems

Varying machine learning algorithms can be deployed. Deep learning
methods can incorporate data representation and task learning in the

same framework

Collaboration between stakeholders (data scientists, clinicians, &
biologists) will allow for safe and beneficial application of Al in
biomedicine
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