How Looooong Can you go? Dose Measurements in a Long Phantom (Review of AAPM Report 200)

Maryam Bostani PhD, DABR

Outline

- 1. Background
- 2. ICRU/AAPM CT Radiation Dosimetry Phantom Design
- 3. Dosimeter
- 4. Definitions and Notions of Different Variables and Functions
- 5. Measurement Methodology Using ICRU/AAPM Phantom and Point Dosimeter
- 6. Adaptation to Stationary Scanning and CBCT
- 7. Practical Implementation in the Clinic

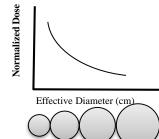
1. Background

CTDI Limitations

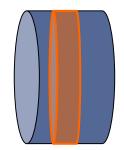
AAPM Report 111

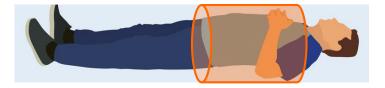
- Why do we "need" a completely new CT Dosimetry paradigm? (CTDI limitations)
 - Phantom limitations
 - Dosimetry limitation
 - CTDI Definition limitation
 - Dosimeter limitation
 - Short coming due to Advancement in CT technology (Beam width, CBCT)

Phantom Limitations


- Size limited, homogeneous and cylindrical phantoms not representative of human body
- Absorbed dose depends on patients size
 - TG204 Effective Diameter → SSDE

Absorbeddose == (fixed)





Phantom Limitations

- Length of 15 cm not sufficiently long scatter path relative to human torso; hence, patient dose may be underestimated with CTDI
 - Up to 40% underestimation

Dosimetry Limitations

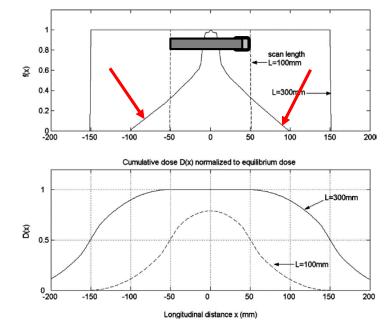
- Dose to air, not to tissue
 - CTDI was never meant to represent patient dose
 - Methodologies that convert CTDI to organ dose
 - AAPM Report NO 246

CT Dose Index and Patient Dose: They Are *Not* the Same Thing¹

Cynthia H. McCollough, PhD Shuai Leng, PhD Lifeng Yu, PhD Dianna D. Cody, PhD John M. Boone, PhD Michael F. McNitt-Gray, PhD

AAPM REPORT NO. 246

Estimating Patient Organ Dose with Computed Tomography: A Review of Present Methodology and Required DICOM Information


A Joint Report of AAPM Task Group 246 and the European Federation of Organizations for Medical Physics (EFOMP)

August 2019

Dosimetry Limitations

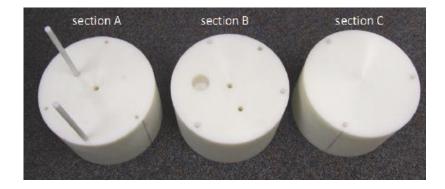
- 100mm pencil chamber not sufficiently long for dose tail measurements from nominal beam width larger than 10 cm (length of the pencil chamber)
 - MDCT clinical protocols use largest available beam widths
 - Toshiba Aquilion one 320 slice
 - CBCT

Single slice dose profile f(x) at center of body phantom and two convolution boxes

Dixon RL. A new look at CT dose measurement: beyond CTDI. Med Phys. 2003 Jun;30(6):1272-80.

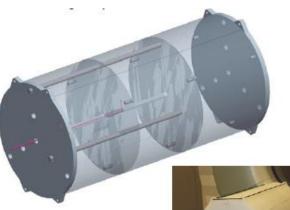
Dosimetry Limitations

- CTDI and Stationary scans w/o table travel
 - Interventional and Perfusion CT
 - Peak skin dose is more relevant



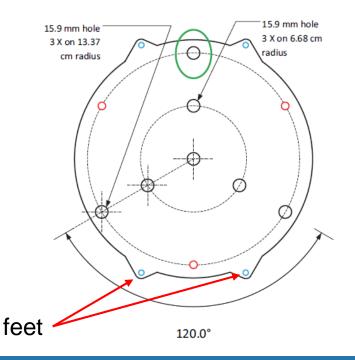
2. ICRU/AAPM CT Radiation Dosimetry Phantom Design

Phantom Description


- Dividable into three sections
 - Each around 13.7 kg (similar to a 32-cm CTDI)
 - · Each section is differently designed
 - Total mass is 41.1 kg (around 91 lb)
- Cylinder 30 cm in diameter and 60 cm in length

Phantom Description

- High-density (0.97 g/cm3) polyethylene
 - "relatively" light in weight very subjective
 - closely mimics the absorption properties of human adipose tissue
 - is readily available and relatively inexpensive
- Dose at the phantom's center is nearly the same as it would be for a water phantom of the same diameter


ICRU/AAPM (TG-200) Dosimetry Phantom

Phantom Description

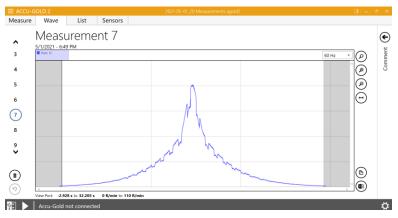
- End cap plate two, one on each side
- Used for alignment of the phantom with the table and gantry
 - helpful for flat patient table only
 - · Concaved tables can't really use the "feet"
 - It will cause the phantom to sag in the middle
 - Use towels or positioning foams

Assembly of the phantom

- · Sections are lifted to the table one at a time
- Section C should be positioned closest to the gantry
- Make sure A and B are aligned to acquire both center and periphery measurements – one time alignment
- Three pins and matching holes help with assembly
- Once all sections are compressed no gap should be visible
- End caps can further help with reducing gaps

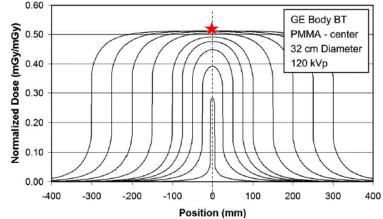
Alignment of the phantom

- Axis of the phantom should be aligned the gantry's axis of rotation
- The peripheral dosimeter insert should be positioned at 12 o'clock
 - Minimizing effects from the table
- Check phantom alignment through the length of the phantom
 - Move the table through the length of the phantom


3. Dosimeter

Point Measurement Dosimeter

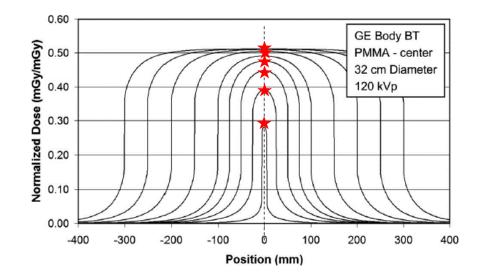
- RadCal Farmer-type Chamber
 - small active length 20 34 mm
 - nominal collection volume of at least 0.6 cm₃
- Real-time dosimeter
 - Measuring instantaneous air kerma rate



4. Definitions and Notions of Different Variables and Functions

Equilibrium Dose – D_{eq}

- The absorbed dose at the center of the FOV along z increases as the scan length increases.
- As L increases, however, the absorbed dose at the center of the scan will at some point reach an asymptotic limit, aka equilibrium dose, Deq.
- + $\rm D_{\rm eq,c}$ and $\rm D_{\rm eq,e}$



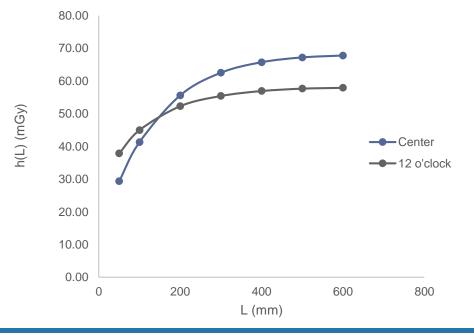
JM Boone, Dose spread functions in computed tomography: A Monte Carlo study", Med Phys 36, 4547-4554 (2009)

$D_L(0)$ – maximum absorbed dose at z=0

- The dashed vertical line at z (0) corresponds to D_L(0)
- Its value depends on scan length L
- D_{L,c}(0) and D_{L,e}(0)

JM Boone, Dose spread functions in computed tomography: A Monte Carlo study", Med Phys 36, 4547-4554 (2009)

Rise-to-Dose-Equilibrium – h(L)


· Describes an exponential rise to a

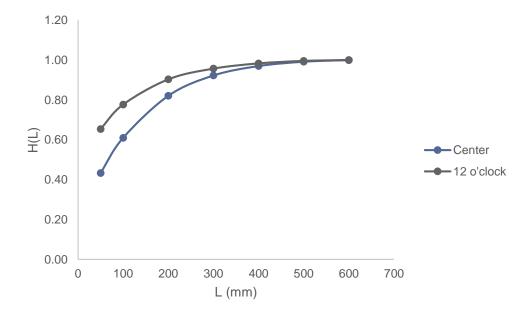
limiting value known as
$$D_{eq}$$

 $h(L) = D_{eq} \left[1 - \alpha \exp(-\frac{4L}{L_{eq}}) \right]$
 $= D_{eq} \left[1 - \alpha 2^{-L/L_{1/2}} \right]$

h(L) states the dependency of DL(0) on

 $h(L) = D_L(0)$

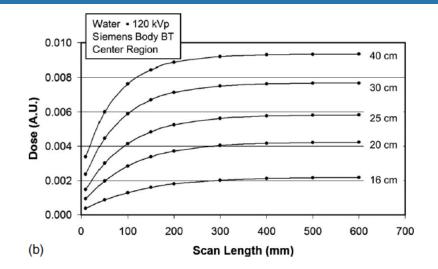
• $h_c(L)$ and $h_e(L)$



$H(L) - Normalized h(L) by D_{eq}$

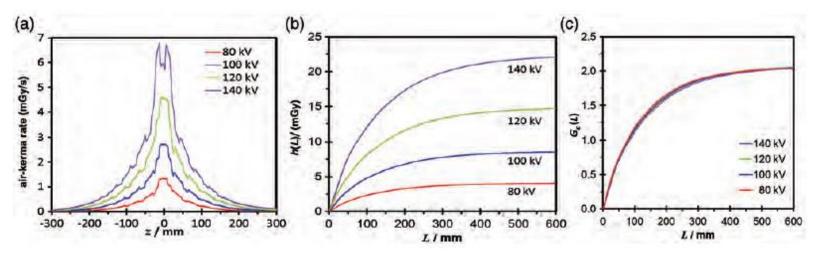
H(L) is the normalized version by D_{eq}

$$H(L) = \frac{h(L)}{D_{eq}} = \frac{D_L(0)}{D_{eq}}.$$


• $H_c(L)$ and $H_e(L)$

Dose Equilibrium Functions and Scan Parameters

- h(L) as a function of phantom diameter
 - As in-plane phantom diameter increases so do $D_L(0)$ and D_{eq}



JM Boone, Dose spread functions in computed tomography: A Monte Carlo study", Med Phys 36, 4547-4554 (2009)

Dose Equilibrium Functions and Scan Parameters

- h(L) as a function of tube potential
 - $\boldsymbol{\cdot}$ As kV increases so do $D_{I}\left(0\right)$ and D_{eq}

International Commission on Radiation Units and Measurements. ICRU Report No. 87: Radiation dose and image-quality assessment in computed tomography. J ICRU. 2012 Apr;12(1):1-149.

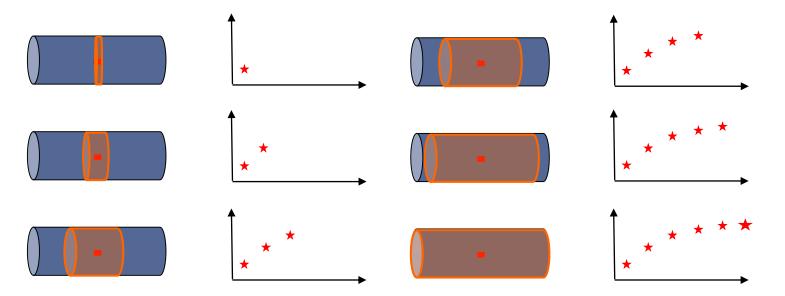
Spatial Average of Dose

 A spatial average can be estimated using the 1/3 and 2/3 coefficients for center and edge measurements, respectively.

$$\overline{h}(L) = \frac{1}{3}h_c(L) + \frac{2}{3}h_e(L)$$

$$\overline{D_{eq}} = \lim_{L \to \infty} \overline{h}(L) = \frac{1}{3} D_{eq,c} + \frac{2}{3} D_{eq,e}$$

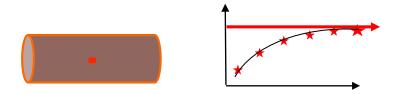
$$\overline{H}(L) = \frac{\overline{h}(L)}{\overline{D_{eq}}},$$



5. Measurement Methodology Using ICRU/AAPM Phantom and Point Dosimeter

Serial Method

• Sampling h(L) at different L values and recording $D_L(0) - L/2$ to +L/2

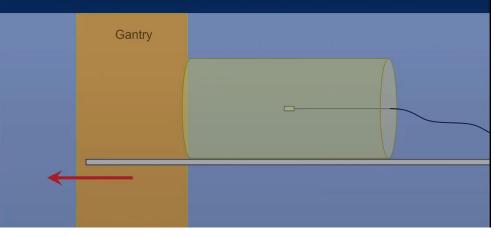


Serial Method

• Data can be fitted to:

$$h(L) = D_{eq} \left[1 - \alpha \exp(-\frac{4L}{L_{eq}}) \right]$$
$$= D_{eq} \left[1 - \alpha 2^{-L/L_{1/2}} \right]$$

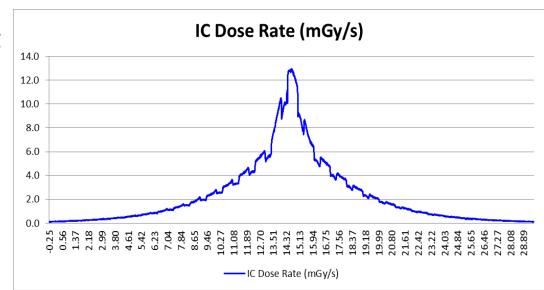
- D_{eq} not quite the true equilibrium dose
 - Actual D_{eq} can be estimated
 - AAPM Report 200 Appendix 5


Serial Method

- While straightforward and analogous to patient scanning, it requires multiple measurements to obtain h(L) time consuming
- High enough mAs have to be used to generate for large enough signal to be picked up by the farmers chamber tube overheating
- Measurements may have to be repeated (in particular for 12 o'clock position) since tube angel cannot be controlled in most cases

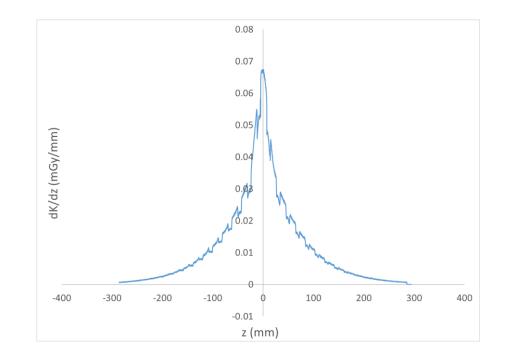
Single Scan Method

Capture the entire central axis profile directly using a helical scan and a small ion chamber

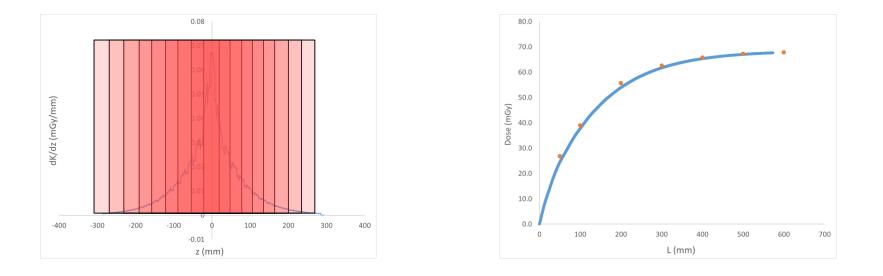

Single Scan Method

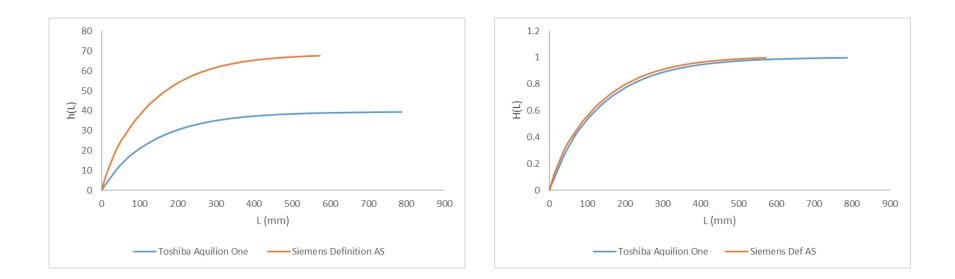
- Real time ion chamber and digital electrometer to provide instantaneous air kerma rate
- Mathematically, more labor intensive to obtain h(L)
 - raw data has to be processed and cumulative dose has to be calculated to generate h(L)

Single Scan Method – Ion Chamber Raw Data

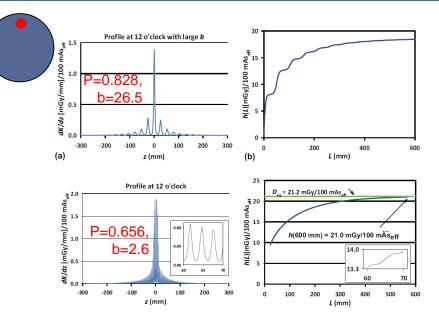

- Measured air kerma rate as a function of time, dK/dt
- Def AS
 - •120 kVp
 - •64 x 0.6
 - Pitch of 1
 - 1 sec rotation time
 - 400 mAs

Single Scan Method – Air Kerma per Distance


- Air kerma rate converted to air kerma per distance using table speed and centered about z=0, i.e. center of the dosimeter and the measured max value
 - Table speed = (32x0.6x1)/1=19.2 mm/sec


Single Scan Method

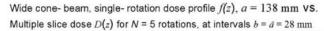
• dK/dz integrated from the center out results in h(L)

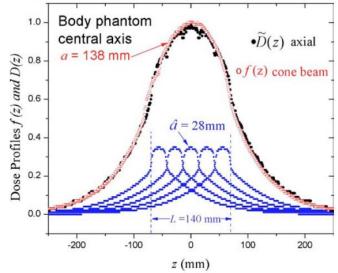

Single Scan Method – H(L)

Considerations for Peripheral Measurements

- Chamber samples one point on the circumference at a time
 - full revolution needed to get an average
 - small b(=pnT) is required to sufficiently sample dose profile → b<l
- p≤l/(2nT), l=active length of dosimeter
 - Force: 19.7mm/(2x96x0.6) = 0.17≈0.2
 - Use of 100 mm chamber: 100mm/(2x96x0.6)=0.868

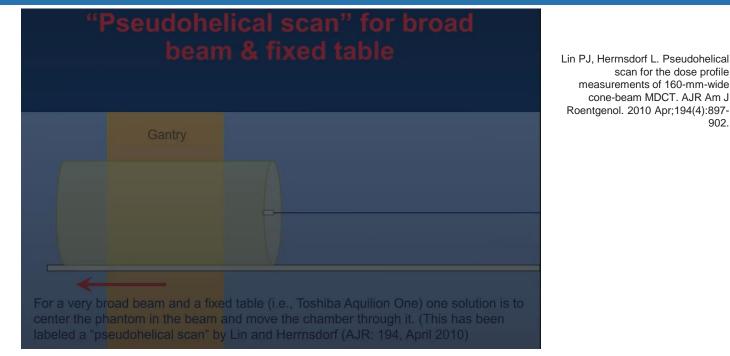
The Design and Use of the ICRU/AAPM CT Radiation Dosimetry Phantom: An Implementation of AAPM Report 111 - TG200 report. Jan 2020




7. Adaptation to Stationary Scanning and CBCT

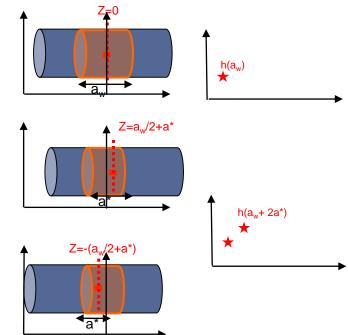
A Unified Theory for CT Dosimetry

- f(z) for a wide beam CBCT of width a=138
 acquired with a single rotation for a stationary
 phantom = accumulated dose distribution
 D(z) from superposition of N(5) axial profiles
 at a=28 mm and spaced at b=28mm with a
 resulting scan length of L=Na=140 mm.
- Peak doses at z=0 are equal f(0) = D(0) = 1



Dixon, R.L. and Boone, J.M. (2010), Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities—With or without phantom motion. Med. Phys., 37: 2703-2718.

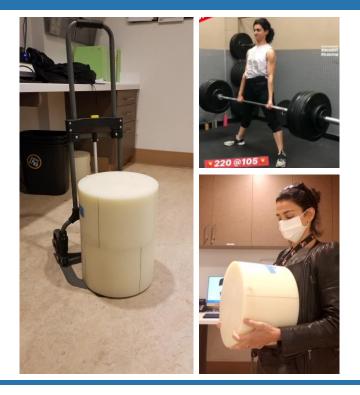
Pseudohelical Scan Method by Lin et al



The Design and Use of the ICRU/AAPM CT Radiation Dosimetry Phantom: An Implementation of AAPM Report 111 - TG200 report. Jan 2020

Serial Method

- Measure integrated dose per rotation and determined h(a_w)
 - L = beam width a
- Move phantom $z=a_w/2 + a^*$ with $a^* \le a_w$
- Move phantom $z=-(a_w/2 + a^*)$
- Add measurements to $h(a_w) \rightarrow h(a_w+2a^*)$



6. Practical Implementation in the Clinic

TG-111 Measurements – Personal Experience

- Routine measurement of D_{eq} is simply $\underline{\mathsf{not}}$ feasible
 - Phantom is extremely hard to transport between sites
 - Lifting a 30lbs something phantom three times to the table isn't really that easy
 - Due to its length, alignment is also challenging
 - CTDI less than a minute
 - ICRU/AAPM phantom about 10 minutes

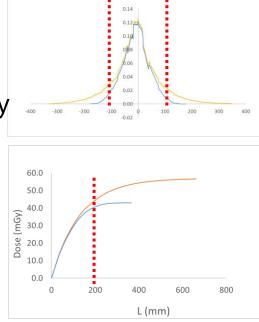
TG-111 Measurements in the Clinic – Possible Solutions

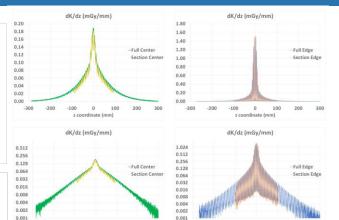
- Three-sectional phantom measurements
 - Performed by manufacturers
 - Similar to CTDI measurements performed in the factory
 - Maybe performed by the physicist during acceptance testing?
- Single-section phantom measurements
 - · Performed by manufacturers and verified by the physicist
- In-air measurements
 - · Performed by manufacturers and verified by the physicist

Single-Section Phantom Measurements

- Helical scan of the entire length (200mm) of the phantom
 - Integrated dose at the center and 12 o'clock position
 - Verification of both measurements during acceptance and only center value verification during annual testing
- 200mm phantom versus 600mm scatter properties... BUT
- Similar to CTDI phantom, single section phantom measurements can be easily incorporated in the clinic as part of annual QC
 - Manufacturers' signal-section phantom measurements

In-Air Measurements


- Chamber is centered in the gantry
- Active part positioned beyond the table – minimizing table attenuation effects
- Regular helical scans are performed by moving he dosimeter through the beam



Single Section vs. Full Length Phantom

- Full $D_{eq} = 56.8 \text{ mGy}$
 - H(200)= 44.5 mGy
- Single D_{eq} = 43.1 mGy

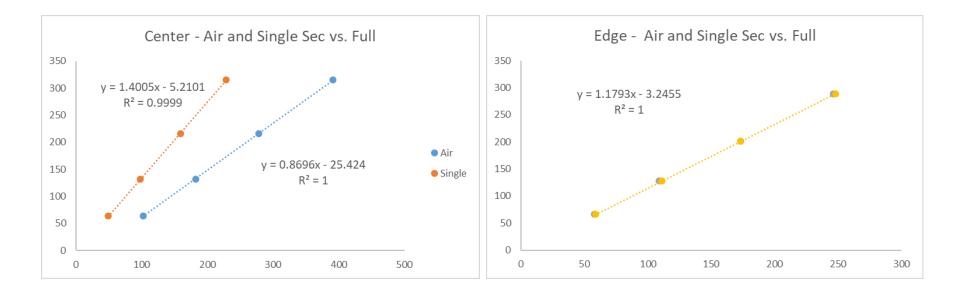
-300 -200

0 100 200 300

z coordinate (mm)

		νст	Br64	νст	Br64	νст	Br64	VCT	Br64
radius	tions	80 kV	80 kV	100 kV	100 kV	120 kV	120 kV	140 kV	140 kV
ctr	1	49	38	98	80	159	133	228	195
ctr	3	64	51	132	109	216	187	315	273
ctr	air	102	68	182	130	278	211	391	299
edge	1	58	43	109	87	173	142	246	204
edge	3	66	50	128	102	201	166	289	245
edge	air	59	42	111	83	173	135	248	198

-300 -200 -100


100 200

z coordinate (mm)

Verification Measurements On Single Section Or in Air On ICRU/AAPM Long CT Phantom: Application of AAPM Report 200 by Bakalyar

Air and Single Sec vs. Full – Center and Edge

Now What?

- Manufacturers need to provide the necessary data
 - Deq for each collimation and energy combination?
 - A single value won't be much of a use unless that's what will be used to validate measurements done in the clinic.
 - h(L) curves?
 - h(L) curves can provide both D_{eq} and h(L) at any desired L
 - Single sec can be performed and compared to h(200)
 - ${\boldsymbol{\cdot}}$ Relationships between in D_{eq} in Air and D_{eq} in full length Phantom

8. Applications

\overline{D}_{eq} versus CTDI_{vol} and TLD

CT Output Dose Performance-Conventional Approach Verses the Dose Equilibrium Method

Ahmad Albngali^{1*}, Andy Shearer¹, Wil van der Putten^{1,2}, Brendan Tuohy^{1,2}, Niall Colgan^{1,2}

¹Department of Physics, National University of Ireland, Galway, Ireland

²Department of Medical Physics and Clinical Engineering, Galway University Hospitals, Galway, Ireland

Email: *A.ALBNGALI1@NUIGALWAY.IE

Table 4. CTDI volume compared	with volume	average equilibrium	dose
-------------------------------	-------------	---------------------	------

Protocols	Deq (mGy)	average ± SD	CTDI volume (mGy)	average ± SD	Variation
	13.70		10.4		
Head	13.78	$13.79 \pm 0.0.06$	10.37	10.38 ± 0.01	32%
	13.89		10.39		
	11.51		8.57		
Chest	11.52	$11.56 \pm 0.0.06$	8.49	8.54 ± 0.03	35%
	11.65		8.57		
	11.71		9.26		
Abdomen	11.66	$11.63 \pm 0.0.07$	9.20	9.25 ± 0.03	25%
	11.53		9.29		

Table 5. TLD compared with equilibrium dose.

Protocols	Deq Center (mGy)	average ± SD	TLD center	average ± SD	Variation
Head	12.49		12.86	12.93 ± 0.47	2%
	12.73	12.63 ± 0.0.05	13.68		
	12.68	12.65 ± 0.0.05	12.36		
			12.84		
Chest	10.45		10.20	11.04 ± 0.52	4%
	10.64	10.58 ± 0.0.09	11.42		
	10.65	10.58 ± 0.0.09	11.54		
			11.01		
Abdomen	10.1		9.73		3%
	10.1	10.04 . 0.000	10.89	10.42 ± 0.53	
	9.91	$10.04 \pm 0.0.09$	10.99		
			10.08		

Spatial Average \overline{D}_{eq} and $CTDI_{vol}$

Comparison of Planer Dose Equilibrium and Computed Tomography Dose Index and Implications for Reported Patient Dose Information

Ahmad Albngali^{1*}, Joshua Deslongchamps¹, James Blackwell^{1,2}, Andy Shearer¹, Brendan Tuohy¹³, Niall Colgan¹

¹Department of Physics, National University of Ireland, Galway, Ireland ²Departmentt of Mathematics, National University of Ireland, Galway, Ireland ³Department of Medical Physics and Clinical Engineering, Galway University Hospitals, Galway, Ireland Email: *A.ALBNGALI1@NUIGALWAY.IE

kV, mA CTDIvol (mGv) DEq (mGy) kV 80, mA 5 2.4 3.1 kV 80, mA 100 5.2 6.9 kV 80, mA 250 12.9 16.2 kV 100, mA 150 14 17.7 kV 100, mA 250 23.3 29.1 kV 120, mA 200 28.3 35.2 kV 120, mA 250 35.4 46.2 kV 100, mA 500 46.5 58.4 kV 135, mA 250 473 59.4 kV 120, mA 500 70.9 89.2

Table 2. CTDIvol versus DEq with different kV and mA

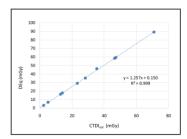
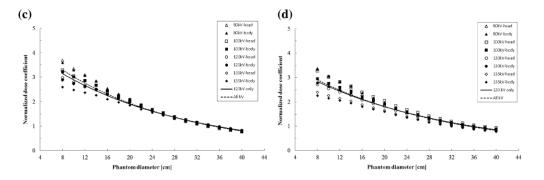


Figure 2. DEq and CTDI_{vol} linear regression.

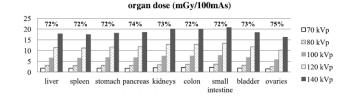


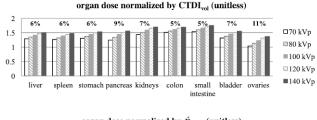
TG111 and SSDE?

Influence of 320-detector-row volume scanning and AAPM report 111 CT dosimetry metrics on size-specific dose estimate: a Monte Carlo study

Tomonobu Haba¹ · Shuji Koyama² · Yutaka Kinomura¹ · Yoshihiro Ida¹ · Masanao Kobayashi³

Received: 14 February 2016/Accepted: 12 July 2016/Published online: 21 July 2016 © Australasian College of Physical Scientists and Engineers in Medicine 2016





Adult abdomen–pelvis CT: Does equilibrium dose-pitch product better account for the kVp dependence of organ dose than conventional CTDI?

Xiang Lia)

Medical Physics Graduate Program, Department of Physics, Cleveland State University, Cleveland, Ohio 44115 and Doctoral Program in Applied Biomedical Engineering, Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115

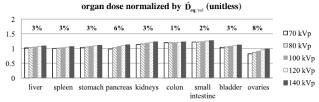


Fig. 4. Variability of three dose quantities ($D_{organ}/CTDI_{vol}$, and $D_{organ}/\hat{D}_{oqyacl}/\hat{D}_{oqyacl}$) across five tube voltage settings for the normal-weight patient model. The percent values represent the coefficient of variation (COV = standard deviation × 100%/mean).

- We reviewed TG200 and different methodologies for measuring D_{eq}
 - Making TG111 measurements on a regular basis is not feasible due to:
 - Phantom's size and weight
 - The load measurements can put on the tube (small pitch values for edge)
 - To be implemented in the clinic and possibly replacing CTDIvol, manufacturers play the major role
 - Change is hard and sometimes it takes a long time to get to the finish line. Is the extra mile worth it?
 - While CTDI is not perfect, it's been doing a decent job so far...

