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1. Background



CTDI Limitations
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• AAPM Report 111

• Why do we “need” a completely new CT Dosimetry paradigm? (CTDI 

limitations)

• Phantom limitations 

• Dosimetry limitation

• CTDI Definition limitation

• Dosimeter limitation 

• Short coming due to Advancement in CT technology (Beam width, CBCT) 



Phantom Limitations
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• Size limited, homogeneous and cylindrical 

phantoms not representative of human body

• Absorbed dose depends on patients size 

• TG204 – Effective Diameter  SSDE 
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Phantom Limitations
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• Length of 15 cm – not sufficiently long scatter 

path relative to human torso; hence, patient 

dose may be underestimated with CTDI

• Up to 40% underestimation 



Dosimetry Limitations
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• Dose to air, not to tissue 

• CTDI was never meant to represent 

patient dose

• Methodologies that convert CTDI to 

organ dose 

• AAPM Report NO 246



Dosimetry Limitations
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• 100mm pencil chamber – not 

sufficiently long for dose tail 

measurements from nominal beam 

width larger than 10 cm (length of 

the pencil chamber) 

• MDCT – clinical protocols use 

largest available beam widths  

• Toshiba Aquilion one 320 slice

• CBCT
Dixon RL. A new look at CT dose measurement: beyond CTDI. Med Phys. 2003 Jun;30(6):1272-80.



Dosimetry Limitations
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• CTDI and Stationary scans w/o table 

travel 

• Interventional and Perfusion CT

• Peak skin dose is more relevant 
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2. ICRU/AAPM CT Radiation 
Dosimetry Phantom Design



Phantom Description
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• Dividable into three sections

• Each around 13.7 kg (similar to a 

32-cm CTDI)

• Each section is differently designed 

• Total mass is 41.1 kg (around 91 

lb)

• Cylinder 30 cm in diameter and 60 

cm in length



Phantom Description
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• High-density (0.97 g/cm3 ) polyethylene

• “relatively” light in weight – very subjective

• closely mimics the absorption properties 

of human adipose tissue 

• is readily available and relatively 

inexpensive

• Dose at the phantom’s center is nearly 

the same as it would be for a water 

phantom of the same diameter



Phantom Description
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• End cap plate – two, one on each side

• Used for alignment of the phantom with 

the table and gantry 

• helpful for flat patient table only 

• Concaved tables can’t really use the “feet”

• It will cause the phantom to sag in the 

middle

• Use towels or positioning foams

feet



Assembly of the phantom
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• Sections are lifted to the table one at a time

• Section C should be positioned closest to the gantry 

• Make sure A and B are aligned to acquire both center 

and periphery measurements – one time alignment 

• Three pins and matching holes help with assembly 

• Once all sections are compressed no gap should be 

visible

• End caps can further help with reducing gaps



Alignment of the phantom
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• Axis of the phantom should be aligned the 

gantry’s axis of rotation

• The peripheral dosimeter insert should be 

positioned at 12 o’clock

• Minimizing effects from the table

• Check phantom alignment through the length of 

the phantom 

• Move the table through the length of the phantom  
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3. Dosimeter



Point Measurement Dosimeter
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• RadCal Farmer-type Chamber 

• small active length 20 – 34 mm

• nominal collection volume of at least 0.6 cm3

• Real-time dosimeter

• Measuring instantaneous air kerma rate
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4. Definitions and Notions of 
Different Variables and 
Functions



Equilibrium Dose – Deq
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• The absorbed dose at the center of the FOV along 

z increases as the scan length increases.

• As L increases, however, the absorbed dose at the 

center of the scan will at some point reach an 

asymptotic limit, aka equilibrium dose, Deq.

• Deq,c and Deq,e

JM Boone, Dose spread functions in computed tomography: A 

Monte Carlo study”, Med Phys 36, 4547-4554 (2009)



DL (0) – maximum absorbed dose at z=0
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• The dashed vertical line at z (0) 

corresponds to DL(0)

• Its value depends on scan length L

• DL,c(0) and DL,e(0)

JM Boone, Dose spread functions in computed tomography: A 

Monte Carlo study”, Med Phys 36, 4547-4554 (2009)



Rise-to-Dose-Equilibrium – h(L) 
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• Describes an exponential rise to a 

limiting value known as Deq

ℎ 𝐿 = 𝐷𝑒𝑞 1 − 𝛼 exp(−
4𝐿

𝐿𝑒𝑞
)

= 𝐷𝑒𝑞 1 − 𝛼2−𝐿/𝐿1/2

• h(L) states the dependency of DL(0) on 

L

h(L) = DL(0)

• hc(L) and he(L)



H(L) – Normalized h(L) by Deq
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• H(L) is the normalized 

version by Deq

• Hc(L) and He(L)
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Dose Equilibrium Functions and Scan Parameters 
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• h(L) as a function of phantom 

diameter

• As in-plane phantom diameter 

increases so do DL(0) and Deq

JM Boone, Dose spread functions in computed tomography: A 

Monte Carlo study”, Med Phys 36, 4547-4554 (2009)



Dose Equilibrium Functions and Scan Parameters 
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• h(L) as a function of tube potential

• As kV increases so do DL(0) and Deq

International Commission on Radiation Units and Measurements. ICRU Report No. 87: Radiation dose and image-quality assessment in computed tomography. J ICRU. 2012 Apr;12(1):1-149.



Spatial Average of Dose  
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• A spatial average can be 

estimated using the 1/3 and 

2/3 coefficients for center and 

edge measurements, 

respectively.  
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5. Measurement Methodology 
Using ICRU/AAPM Phantom 
and Point Dosimeter



Serial Method 
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• Sampling h(L) at different L values and recording DL(0) – -L/2 to +L/2



Serial Method 

• Data can be fitted to:

ℎ 𝐿 = 𝐷𝑒𝑞 1 − 𝛼 exp(−
4𝐿

𝐿𝑒𝑞
)

= 𝐷𝑒𝑞 1 − 𝛼2−𝐿/𝐿1/2

• Deq not quite the true equilibrium dose 

• Actual Deq can be estimated 

• AAPM Report 200 Appendix 5



Serial Method
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• While straightforward and analogous to patient scanning, it requires 

multiple measurements to obtain h(L) – time consuming

• High enough mAs have to be used to generate for large enough 

signal to be picked up by the farmers chamber – tube overheating 

• Measurements may have to be repeated (in particular for 12 o’clock 

position) since tube angel cannot be controlled in most cases



Single Scan Method
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Single Scan Method
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• Real time ion chamber and digital electrometer to provide 

instantaneous air kerma rate

• Mathematically, more labor intensive to obtain h(L)

• raw data has to be processed and cumulative dose has to be calculated 

to generate h(L)



Single Scan Method – Ion Chamber Raw Data 
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• Measured air kerma rate 

as a function of time, dK/dt

• Def AS

• 120 kVp

• 64 x 0.6 

• Pitch of 1

• 1 sec rotation time 

• 400 mAs



Single Scan Method – Air Kerma per Distance
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• Air kerma rate converted to 

air kerma per distance using 

table speed and centered 

about z=0, i.e. center of the 

dosimeter and the measured 

max value

• Table speed = 

(32x0.6x1)/1=19.2 mm/sec



Single Scan Method
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• dK/dz integrated from the center out results in h(L) 



Single Scan Method – H(L)
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Considerations for Peripheral Measurements 
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• Chamber samples one point on the 

circumference at a time 

• full revolution needed to get an average

• small b(=pnT) is required to sufficiently 

sample dose profile  b<l

• p≤l/(2nT), l=active length of dosimeter

• Force: 19.7mm/(2x96x0.6) = 0.17≈0.2

• Use of 100 mm chamber: 

100mm/(2x96x0.6)=0.868

P=0.828, 

b=26.5

P=0.656, 

b=2.6

The Design and Use of the ICRU/AAPM CT Radiation Dosimetry Phantom: 

An Implementation of AAPM Report 111 - TG200 report. Jan 2020 
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7. Adaptation to Stationary 
Scanning and CBCT 



A Unified Theory for CT Dosimetry
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Dixon, R.L. and Boone, J.M. (2010), Cone beam CT dosimetry: A unified and self-consistent approach including all scan modalities—With or without phantom motion. Med. Phys., 37: 2703-2718.

𝑓 0 = 𝐷 0 = 1

• f(z) for a wide beam CBCT of width a=138 

acquired with a single rotation for a stationary 

phantom = accumulated dose distribution 

D(z) from superposition of N(5) axial profiles 

at a=28 mm and spaced at b=28mm with a 

resulting scan length of L=Na=140 mm. 

• Peak doses at z=0 are equal 



Pseudohelical Scan Method by Lin et al 
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Lin PJ, Herrnsdorf L. Pseudohelical

scan for the dose profile 

measurements of 160-mm-wide 

cone-beam MDCT. AJR Am J 

Roentgenol. 2010 Apr;194(4):897-

902.

The Design and Use of the ICRU/AAPM CT Radiation Dosimetry Phantom: An Implementation of AAPM Report 111 - TG200 report. Jan 2020 



Serial Method
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• Measure integrated dose per rotation and 

determined h(aw)

• L = beam width a

• Move phantom z=aw/2 +a*    with a*≤aw

• Move phantom z=-(aw/2 +a*)

• Add measurements to h(aw)  h(aw+2a*)

aw

a*

Z=0

Z=aw/2+a*

a*

Z=-(aw/2+a*)

h(aw)

h(aw+ 2a*)
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6. Practical Implementation in the 
Clinic



TG-111 Measurements – Personal Experience

42

• Routine measurement of Deq is simply not

feasible

• Phantom is extremely hard to transport between 

sites 

• Lifting a 30lbs something phantom three times to 

the table isn’t really that easy 

• Due to its length, alignment is also challenging

• CTDI – less than a minute

• ICRU/AAPM phantom – about 10 minutes  



TG-111 Measurements in the Clinic – Possible 
Solutions 
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• Three-sectional phantom measurements 

• Performed by manufacturers

• Similar to CTDI measurements performed in the factory

• Maybe performed by the physicist during acceptance testing? 

• Single-section phantom measurements

• Performed by manufacturers and verified by the physicist

• In-air measurements

• Performed by manufacturers and verified by the physicist



Single-Section Phantom Measurements
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• Helical scan of the entire length (200mm) of the phantom 

• Integrated dose at the center and 12 o’clock position

• Verification of both measurements during acceptance and only center value 

verification during annual testing 

• 200mm phantom versus 600mm – scatter properties…  BUT

• Similar to CTDI phantom, single section phantom measurements 

can be easily incorporated in the clinic as part of annual QC 

• Manufacturers’ signal-section phantom measurements



In-Air Measurements
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• Chamber is centered in the gantry 

• Active part positioned beyond the 

table – minimizing table attenuation 

effects

• Regular helical scans are performed 

by moving he dosimeter through the 

beam 



Single Section vs. Full Length Phantom 
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Verification Measurements On Single Section Or 

in Air On ICRU/AAPM Long CT Phantom: 

Application of AAPM Report 200 by Bakalyar

• Full Deq = 56.8 mGy

• H(200)= 44.5 mGy

• Single Deq = 43.1 mGy



Air and Single Sec vs. Full – Center and Edge
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Now What?
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• Manufacturers need to provide the necessary data

• Deq for each collimation and energy combination?

• A single value won't be much of a use unless that’s what will be used to 

validate measurements done in the clinic.  

• h(L) curves? 

• h(L) curves can provide both Deq and h(L) at any desired L

• Single sec can be performed and compared to h(200)

• Relationships between in Deq in Air and Deq in full length Phantom
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8. Applications



ഥ𝑫eq versus CTDIvol and TLD
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Spatial Average ഥ𝑫eq and CTDIvol
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TG111 and SSDE?
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Deq and Organ Dose
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Summary 

54

• We reviewed TG200 and different methodologies for measuring Deq

• Making TG111 measurements on a regular basis is not feasible due to:

• Phantom’s size and weight

• The load measurements can put on the tube (small pitch values for edge)

• To be implemented in the clinic and possibly replacing CTDIvol, 

manufacturers play the major role 

• Change is hard and sometimes it takes a long time to get to the finish 

line. Is the extra mile worth it?

• While CTDI is not perfect, it’s been doing a decent job so far…   


