

You Spin Me Right Round: Approaches to Measuring CT Dose in Helical Modes

Izabella Barreto, PhD Clinical Assistant Professor Department of Radiology University of Florida

• None

Outline

- 1. Implications of measuring CTDI
 - Quantitative
 - Practical
- 2. Measuring Rise to Equilibrium Curves
- 3. Estimating CTDI_{vol} with a helical acquisition

Quantitative Limitations of the CTDI

CTDI excludes dose that accumulates for long scans

CTDI excludes the primary beam for beams wider than 100 mm

CTDI is inappropriate for stationary table applications

Because of scatter tails, the dose profile extends beyond the nominal collimated beam width

Scatter tails (10% maximum) reach **150 mm** for a 19.2 mm nominal beam width

for a 160 mm nominal beam width

Dose profiles as a function of Scan Length

- Helical scans with various different scan lengths
- Central cumulative dose increases as scan length increases
 - Due to increased scatter contributions

Figure 7.9 in ICRU 87, from Boone et al., 2009

Cumulative Dose as a function of Scan Length

As scan length increases, the cumulative dose at the midpoint of the scan range increases, reaching an equilibrium dose

Measuring the *Approach-to-Equilibrium* Function (h(L) in TG111)

ICRU/AAPM Phantom

- AAPM TG200 & ICRU 87
 - Design of a new ICRU/AAPM phantom
 - 600 mm long, 91 lb
 - Divided into 3 sections
 - Measurement methodology that overcomes the limitations of CTDI

Figure 1 in AAPM TG200

Measuring the Approach-to-Equilibrium Function (H(L) in TG200)

12

Normalizing by CTDI_{vol}

 Normalization by CTDI_{vol} corrects for differences in kVp, filtration, beam width, geometry, etc

x = *center or periphery*

• Very similar normalized G(L) curves for different kVp and scanners:

Measurement of h(L) in the Clinical Environment

• Combining the center and peripheral measurements:

$$CTDI_{vol}(L) = h_a(L) = \frac{1}{3}h_c(L) + \frac{2}{3}h_p(L)$$

Clinical Assessment of Patient Dose

- The length-adjusted average dose can be estimated in the clinical setting if given:
 - G(L) function
 - Scanner-reported CTDI_{vol}
 - Scan length L

 $h_a(L) = CTDI_{vol}(L) = G_a(L) \times CTDI_{vol}(100 \text{ mm})$

Practical Limitations of the CTDI

- CTDI is measured with a single axial scan with no table motion
 - Helical protocols must be converted to an axial scan

- Issues:
 - Unmatched collimation or bowtie filter settings
 - Manufacturer's CTDI Measurement Mode Unavailable or Impractical
 - Some Dual Energy CT protocols can't be acquired in axial mode

- ACR: Use collimations matched as closely as possible
- These measurements may not accurately reflect the clinical protocol's CTDI

Converting a helical protocol to an axial scan

- Conversion is time consuming
 - Collimation, effective mAs
- Verification of appropriate parameters is time consuming
- Risk of failing ACR submission if performed incorrectly

Dosimetry	Minor	Major
Dosimetry images not submitted		x
Helical scans performed		x
Incorrect dosimetry phantom used		x
Parameters used on the dosimetry images do not match the protocols recorded in the phantom data form	х	
kV used on the dosimetry images does not match what is recorded on the phantom data form		x
Total beam width used is different than what is recorded in the phantom data form (exclusive of scanner limitations)		x
Non-chamber holes are not filled	x	
CTDIvol exceeds the pass-fail criteria		x
CTDIvol exceeds the reference level	х	
CTDIvol not calculated correctly but can be recalculated	х	

https://accreditationsupport.acr.org/

Received: 18 November 2019 Revised: 22 April 2020 Accepted: 12 May 2020

DOI: 10.1002/acm2.12944

MEDICAL IMAGING

WILEY

The helically-acquired CTDI_{vol} as an alternative to traditional methodology

```
Stephanie M. Leon<sup>1</sup> | Robert J. Kobistek<sup>2</sup> | Edmond A. Olguin<sup>1</sup> | Zhongwei Zhang<sup>1</sup> | Izabella L. Barreto<sup>1</sup> | Bryan C. Schwarz<sup>1</sup>
```


Assesses whether the traditional CTDI measurement methodology can be updated by measuring scanning the entire pencil ion chamber length helically

Evaluated

- 10 GE • 31 CT scanners 16 to 320 5 Philips Manufactured 6 Siemens slices 2005 - 2017 10 Canon • 95 protocols Adult Pediatric Adult Head **Pediatric Head** Abdomen Abdomen
 - If used clinically and acquired helically
 - Collimation widths: 8 to 40 mm & Pitches: 0.298 to 1.728
 - For each protocol, CTDI_{vol} was
 - Measured with the Traditional Axial Method
 - Measured with the Helical Method
 - Recorded from the scanner display

Nomenclature

- Traditional Axial Method denoted CTDI_{vol} (A)
- Helical Method denoted CTDI_{vol}(H)
 - → CTDI_{vol}(H) is *NOT* a defined quantity by the IEC
 - It is nomenclature adopted in this study to estimate what the CTDI_{vol} would be for measurement with a helical acquisition

Measuring CTDI_{vol}(A)

- Using the methodology described by the ACR
 - Acquire a single axial slice at the center of the phantom
 - If the clinical protocol is normally scanned helically, change to an axial scan with the same (or closest) beam width

Measuring CTDI_{vol}(H)

- 1. Acquire a localizer image of the pencil chamber in the CTDI phantom
- 2. Select the helical clinical protocol
 - Use a fixed mA
- 3. Set the scan length to cover the entire visible chamber length (100 mm)
- 4. Scan the chamber with a helical acquisition
- Perform 3 times in the central hole and 3 times in the 12:00 peripheral hole

Calculating the
$$CTDI_{vol}$$
 (H)

$$CTDI_{vol}^{H}(mGy) = \left(1/3 \cdot M_{H}^{center} + 2/3 \cdot M_{H}^{peripheral}\right)$$

- M_H is the meter reading from the helical acquisition
- Don't correct for pitch
 - The meter reading was acquired with the clinical pitch applied

Reproducibility

• Scans were repeated 5 times for adult protocols on 3 scanners

Dhantom	Manufacturer	Axial CTDI		Helical CTDI	
Phantom		Mean (mGy)	CV	Mean (mGy)	CV
Head	Canon	39.7	0.15%	37.0	0.17%
	GE	53.9	0.42%	55.0	0.30%
	Siemens	46.3	0.04%	43.4	0.09%
Body	Canon	14.2	1.31%	14.1	0.19%
	GE	15.0	2.55%	14.9	0.22%
	Siemens	8.9	4.17%	8.2	0.32%

Peripheral Measurements

- Peripheral measurements from a single axial slice are prone to variation
 - Variability in tube start location and beam overlap

CTDI_{vol}(H) displayed less measurement variability than CTDI_{vol}(A)

Differences between Axial & Helical CTDI_{vol}

Differences between Axial & Helical CTDI_{vol}

- Excellent agreement between CTDI_{vol}(A) and CTDI_{vol}(H)
- 95% CI = -4.4 mGy to 4.9 mGy
- No significant differences
 (*p*-value = 0.81)

Axial & Helical CTDI_{vol} were strongly correlated

Difference (mGy) between CTDI_{vol} & Scanner Display

	Protocol	Displayed CTDI _{vol}	Axial vs Displayed	Helical vs Displayed
				H R L
ñ	Adult Head	57.4	-0.1	-0.6
1	Adult Abdomen	14.2	0.0	0.5
	Pediatric Head	27.4	-0.1	-0.1
1	Pediatric Abdomen	4.6	0.1	0.1

Difference (mGy) between CTDI_{vol} & Scanner Display

- 4 protocols had discrepancies >20% from the display when measuring with CTDI_{vol}(A)
 - 1 had unmatched collimation
 - Siemens, 14.2 mGy
 - 3 had matched collimation
 - 2.07 to 3.32 mGy
- Discrepancies dropped <20% with CTDI_{vol}(H)

Differences between CTDI_{vol}(A) and CTDI_{vol}(H) were independent of collimation width and pitch

Impact of Excess Scan Length

- It can be difficult to visualize the pencil chamber
- The procedure was repeated with the scan range set to the phantom borders rather than the chamber volume
- The measured CTDI_{vol}(H) increased in all cases (range 2.1%–9.7%)
- Recommend adherence to chamber-only protocol

Conclusion

• Excellent agreement

- between axial and helical CTDI_{vol} methods
- between CTDI_{vol}(H) and the scanner-reported CTDI_{vol}

• The CTDI_{vol}(H) measurement

- does not depend on helical pitch or collimation width
- can be accomplished more easily than the axial method

Limitations

- Collimation widths >40 mm were not tested
- Dual energy protocols were not tested
- Calculation of displayed CTDI_{vol} varies with manufacturer
- 100 mm scan length still underestimates scatter tails

- Not yet accepted as a measurement methodology by the ACR
- Potential option in the future if supported
- Option for annual surveys in unaccredited scanners

Thank you

Izabella.Barreto@radiology.ufl.edu https://medphysics.med.ufl.edu/ Twitter: @BarretoPhd