Personalized brachytherapy with integration of 3D printing technologies

James Robar, PhD, FCCPM

Professor of Radiation Oncology, Dalhousie University

Chief of Medical Physics, Nova Scotia Health

AAPM 2021 SAM Session Brachytherapy technology horizon

Disclosure I am a co-founder of Adaptiiv Medical Technologies

Overview

- Why incorporate 3D printing into brachytherapy?
- Gynecological brachytherapy applications
 - Extending the flexibility of standard applicators
 - Fully customized applicators
- Surface brachytherapy applications
- Application to permanent seed implants
- Biocompatibility and sterilization

Why incorporate 3D printing into brachy?

1. Dosimetric motivations

- Specify strategic catheter trajectories
- Include interstitial needle paths without limitations
- Combine intracavitary and interstitial applicators
- Incorporation of in-printed, patient-specific shielding

2. Patient experience and ease of use

- Enhanced fit for patient
- Improved reproducibility

3. Increase efficiency by digitizing manual processes

- Eliminate hand-fabricated moulds
- Reduce manual steps (e.g., attachment of Freiburg flap)

3D printing in gynecological brachytherapy

Gyne brachytherapy New degrees of freedom for standard applicators

Example: locally advanced cervix cancer with extension to parametria

- Based on Varian 26 mm tandem/ring applicator
- Ring channel removed, replaced by 8 equispaced needle guides
- Additional 5 needle guides through vaginal template
- Needle angles and extensions based on MRI treatment planning
- Multijet printing using Visijet M3 Crystal (USP Class VI)

Lindegaard et al, Radiotherapy and Oncology, 2016

Gyne brachytherapy New degrees of freedom for standard applicators

- Adaptiiv 3DBrachy for IC/IS split-ring design
- Imports needle paths from TPS, allows arbitrary angles up to 45 degrees
- Allows for variation in ring radius
- Incorporates needle guide tube notches
- 3D printable with SLA, Biomed Clear or MED-AMB
- Needle tunnel diameters accurate to 0.1 mm (Basaric, 2021)
- Compatible with EZ/BEBIG ring/tandem hardware

Adaptiiv 3DBrachy design software Basaric et al, World Congress of Brachytherapy, 2021

FDA 510(k) clearance pending

Gyne brachytherapy New degrees of freedom for standard applicators

- Kamio *et al* (2021) implemented toward EMBRACE II study requirements
- Printed with Surgical Guide and Biomed Clear SLA resins
- Evaluated mechanical viability pre- and poststerilization
- Found acceptable tolerances ~0.1 mm and functionality

DALHOUSIE UNIVERSITY

• Dubbed Montreal split-ring

Adaptiiv Montreal split-ring applicator

Kamio et al, Canadian Organization of Medical Physicists Annual meeting, 2020 Kamio et al, World Congress of Brachytherapy, 2021

Gyne brachytherapy Fully customized applicators

- Example: patient-specific applicators for stage IIIA/B cervical cancer with paravaginal and parametrial extension (Laan *et al*, 2019)
- MRI with aqueous gel for distension and visibility
- Pre-planning based on MRI
- Single applicator can contain IC trajectories an IS needle guides

Laan et al, 3D Printing in Medicine, 2019

Gyne brachytherapy Fully customized applicators

- The Halifax Applicator
- Designed in Adaptiiv 3DBrachy
- Combination of IC and IS trajectories in single applicator
- Integrates into BEBIG tandem
- Printable using SLA or MJF biocompatible materials

FDA 510(k) clearance pending

Gyne brachytherapy Fully customized applicators

Gyne brachytherapy Incorporation of anatomy-specific shielding

FIG. 2. The design of the patient-specific applicator, conforming the WPLA shielding to the size and location of the target volume. OAR: organ at risk, PMMA: polymethyl methacrylate, and WPLA: tungsten-polylactic acid composite.

Semeniuk et al, Medical Physics, 2021

Gyne brachytherapy Incorporation of anatomy-specific shielding

FIG. 5. (a) Mass attenuation coefficients for different applicator materials as a function of photon energy and corresponding (b) dose profiles in water for generic applicators.

Semeniuk et al, Medical Physics, 2021

3D printing in surface brachytherapy

Surface brachytherapy Patient-specific applicators

- **3D printed surface applicators** replace wax moulds or Freiburg flap
- Gives user control over catheter spacing, distance to surface
- Software includes physical constraints, e.g., minimum radius of curvature

Surface brachytherapy Patient-specific applicators

Example:

Chytyk-Praznik et al (AAPM 2020)

- Treatment of bilateral lesions on shins
- Each applicator included 13 catheter tunnels to cover multiple PTVs
- Applicators designed in 3DBrachy and FDM-printed using PLA
- Observed excellent fit, efficient placement and treatment delivery
- Allows customization of trajectories compared to Freiburg flap

Chytyk-Praznik et al, AAPM/COMP Annual Meeting, 2020

Other applications of 3D printing in brachytherapy

Templates for permanent seed implant

- **3D printed templates** based on imaging
- Array of needle guides control both needle orientation and depth
- Reports on use for treatment of ameloblastoma, rectal, pancreatic, liver, thoracic, brain tumours with I-125
- Provide a patient-specific alternative to freehand methods

Huang et al, J. Radiat Res, 2016.

3D printed brachy applicators

Biocompatibility and sterilization

- Biocompatibility requirement depends on the substrate (e.g., intact skin / mucosa / breached skin)
- Depends on the duration (e.g. < 24h vs > 24h)
- United States Pharmacopeia assesses adverse effects in animal studies, provides categorization of Class I to VI
- For brachytherapy application with < 24h duration
 - Class I for intact skin
 - Class III for breached skin
 - Class V for mucosal surfaces
- However, now there are many Class VI printable materials (conservative option)
 - **SLA** Accura ClearVue (3D Systems), BioMed Clear (Formlabs)
 - Multijet Fusion PA12 and TPU (HP)
- To be widely useful, should be autoclave/steam sterilizable, e.g., 132 deg / 4 min
 - Many SLA and MJF-printed materials satisfy this requirement
 - Many FDM-printed materials do not

Summary

- In gynecological brachytherapy, 3D printing has introduced
 - Patient-specific extension of standard applicators, e.g., tandem/ring to include custom needle guides
 - Fully customized combined IC/IS applicators
- In surface brachytherapy
 - Custom patient applicators allow control over source trajectory, spacing, distance from the skin
 - Can be fabricated to conform to complex surfaces
- Software solutions exist that interface with the TPS and do not require CAD skills
- In permanent-seed implants, 3D printed templates conform to the skin and eliminate freehand methods
- MJF and SLA have been the 3D printing methods of choice
- There is a range of USP Class VI and sterilizable materials available

