State of the ART High Tesla MRgART

Dan Hyer, PhD Associate Professor

University of Iowa Health Care

COI

- License revenue from IBA
- Consulting for Elekta

Agenda

- Technology overview
- Implementation timeline
 - Construction
 - Installation
 - Commissioning
- Workflow overview at our site
- How are we using the Unity
 - Statistics on what kind of cases we have treated
 - Case highlight

University of Iowa

• Treatment throughput and machine reliability

TECHNOLOGY OVERVIEW

Commercial Implementations

Unity overview

- Beam Energy: 7 MV FFF
- SAD: 143.5 cm
- Maximum Field Size: 22x57.4 cm²
- Treatment Delivery: Step & Shoot IMRT
- Dose Rate: <u>425 MU/min</u>
- Max Gantry Speed: 6 RPM

The University of Iowa

- Leaf Speed: <u>6 cm/s</u>
- Collimator: <u>90°</u>

Construction: ~6 months (Highly Variable) Installation: ~6 months (~3 months for new installations) Commissioning/training: ~3 months

IMPLEMENTATION TIMELINE

Implementation timeline

MV isocenter, MR-MV alignment

COMMISSIONING: MECHANICALS

MV isocenter - starshot

- Need to add copper plates to eliminate ERE
- Analyze spokes only within the central region

MV isocenter - starshot results

MR-MV alignment

- MRI and gantry are mechanically aligned during installation
- Any offset between the systems needs to be quantified and accounted for during treatment planning

The University of Iowa

MR-MV alignment phantom

- Alignment evaluated using the MR-MV isocenter phantom
 - 7 ZrO₂ spheres in a known geometry surrounded by copper sulfate solution
- EPID and MRI images are acquired without moving the phantom
- Analyzed using QA alignment software

The University of Iowa

- 0.307 mm (lat), 0.998 mm (sup/inf), 0.015 mm (ant/post)

Absolute dose calibration

COMMISSIONING: DOSIMETRY

Dose calibration methodology

• Followed TG-51 formalism with modifications by Malkov et al¹

$$D_W^Q = Mk_Q k_B N_{D,w}^{^{60}Co}$$

- Due to extended SAD, beam quality specifier was TPR_{20,10}
 - TG-51 requires %dd(10)_x for k_{Q} determination
 - Conversion following the formalism of Kalach $et al^2$
- $K_{\rm B}$ factor accounts for changes in chamber response due to the magnetic field
 - TN30013 chamber aligned parallel with the magnetic field
 - 0.994 (O'Brien et al)³
 - 0.988 (Malkov et al)¹
- Output measured at 90° to remove dependence due to varying helium level

- 2. Kalach N I and Rogers D W 2003 Which accelerator photon beams are "clinic-like" for reference dosimetry purposes? Med Phys 30 1546-55
- 3. O'Brien D J, Roberts D A, Ibbott G S and Sawakuchi G O 2016 Reference dosimetry in magnetic fields: formalism and ionization chamber correction factors Med Phys 43 4915

Dose calibration validation

- Independent validation performed with UW Calibration Lab TLDs
- Construction of probes
 - 4 TLDs embedded in a solid water phantom with minimal air-gaps
- Result: 0.991 ± 5%

University of Iowa

Geometric accuracy

MRI COMMISSIONING

Geometric accuracy

- Assessed using the vendor supplied 3D geometry phantom
 - Markers in 7 planes
 - 25 mm in-plane spacing
 - 55 mm plane spacing
 - Overall size

The University of Iowa

• 500x375x330 mm³

Geometric accuracy – results

 Geometric accuracy is assessed within variable diameter spherical volumes

	Maximum distortion (mm) – Excluding 2% of markers with greatest values					
	400 mm DSV	3 <u>50 mm</u> DSV	300 mm DSV	200 mm DSV	100 mm DSV	
Total	2.05	0.82	0.68	0.52	0.32	
RL	0.64	0.43	0.35	0.27	0.16	
AP	1.72	0.64	0.51	0.38	0.22	
FH	0.45	0.39	0.36	0.28	0.19	

ADAPTIVE THERAPY WORKFLOW

Workflow overview

Online treatment process

Understanding the adaptive planning process

- Adapt to position
 - MLC position is shifted to account for daily setup errors
 - Plan is re-calculated with new MLC positions
 - No new contours are drawn!
- Adapt to shape

Iniversity of Iowa

- New contours are drawn to account for anatomical changes
- Plan is re-optimized and re-calculated

Standard linac: Table shift

MRI linac: Adapt to Position

MRI linac: Adapt to Position

Prostate Seminal Vesicles Bladder Rectum Body Bone

Adapt to shape: Adapted contours erridden on structures that may be overlapped

0

Prostate Seminal Vesicles Bladder Rectum Body Bone

Statistics and case highlights

HOW ARE WE USING THE UNITY?

Sites treated

Case highlight: Liver

- Potential benefits
 - Visualizing tumor
 - Far superior to CBCT
 - Visualizing adjacent OAR's
 - Adapt plan if position of OAR's change throughout treatment to achieve ablative doses
 - 3 fx RX: 45-60 Gy, Limit to bowel is 35 Gy
- Challenges
 - Motion

The University of Iowa

• Typically can use abdominal compression to reduce motion

Standard planning strategy

- Unity
 - HCC: 45 Gy / 3fx
 - Mets: 54-60 Gy / 3 fx
 - 3-5 mm PTV around ITV
 - 8-10 mm with KV imaging
 - 11 coplanar beams
 - Step and shoot IMRT
- Unity imaging

The University of Iowa

- T2 navigator triggered MRI

Standard of care – CBCT

The University of Iowa

Original contours

<u>.</u>

Electron densities are overridden on structures that may be overlapped.

GTV Liver Kidneys Stomach Great Vessel Cord Body Bone

Adapted contours

•

Electron densities are overridden on structures that may be overlapped

GTV Liver Kidneys Stomach Great Vessel Cord Body Bone

Treatment throughput and uptime

MR-LINAC

The University of Iowa

Planning and review time

The University of Iowa

Included

- Registration
- Contouring (if needed)
- Plan optimization
- Plan approval
- Second check

Not Included

- Patient ingress/egress
- Image acquisition

Slide from David Dunkerley, PhD

Treatment delivery

Machine uptime

	Versa A	Versa B	Unity	GammaKnife
Start Date:	12/1/2018	12/1/2018	5/20/2019	12/1/2018
End Date:	12/1/2019	12/1/2019	12/1/2019	12/1/2019
Down Time [Hr]	15.75	62.95	28.03	0.00
Workdays In Range (M-F)	261	261	139	261
Holidays in Range	10	10	4	10
Principal period of maintenance (PPM) [hr/d]:	14	14	14	14
Total PPM [hr]	3514	3514	1890	3514
Up-Time [%]:	99.55%	98.21%	98.52%	100.00%

The University of Iowa

Thanks!

