Joint EANM/AAPM Multi-disciplinary Scientific Symposium

Quantitative SPECT for Radionuclide and External Beam Treatment Planning:

SPECT in Radionuclide and External Beam Treatment Planning

S. Cheenu Kappadath, PhD, FAAPM

THE UNIVERSITY OF TEXAS

MDAnderson Cancer Center

Making Cancer History*

Disclosures

- Research Grants
 - Sirtex Medical, Boston Scientific, GE Healthcare, ABK Biomedical
- Consultant
 - Sirtex Medical, Boston Scientific, Varian, ABK Biomedical, Terumo
- Contact Info
 - https://www.mdanderson.org/kappadath-lab
 - skappadath@mdanderson.org

AAPM 2021 2

Outline

- Introduction to Radiopharmaceutical therapy
- SPECT in Radiopharmaceutical therapy
 - ¹⁷⁷Lu DOTATATE
 - 90Y SIRT
- SPECT in EBRT/PBR
 - Lung Tx
 - Liver Tx

S. Cheenu Kappadath, PhD

What is Radiopharmaceutical Therapy?

- Radiopharmaceutical uptake
 - Disease sites (Target)
 - Non-target organs (Organs at Risk)
- Tracer radiopharmaceutical administered to plan therapy dose/activity

SAFETY

 Dose constraints on Organs at Risk (e.g., red marrow, lungs, liver, kidneys)

EFFICACY

 Dose constraints on tumors (e.g., planned mean dose > threshold dose for response)

Serial Quantitative SPECT/CT scans

Advantages

- More accurate assessment of TAC
- Patient-specific organ masses
- Patient-specific S-factors via Monte Carlo or GBBS
- More accurate tumor dosimetry
- Facilitates Voxel dosimetry

Disadvantages

- Increased patient time on the scanner (factor of 2 or more)
- Higher use of resources for clinical operation
- Increased complexity in data processing

Practical Approaches

- Integrate a single quantitative SPECT/CT scan within the sequence of serial whole-body planar imaging −2.5D dosimetry
- Modified serial quantitative SPECT/CT scans
- Single-time point SPECT/CT

S. Cheenu Kappadath, PhD

EANM 2020

■ ¹⁷⁷Lu-DOTATATE/DOTATOC

AAPM 2021

¹⁷⁷Lu-DOTATATE (Lutathera)

- Recent FDA-approval for use in GEP-NET tumors (NETTER-1 trial)
 - Expanding to use in all NET expressing SSR2
- Fractionated Schema: 4 cycles of 7.4 GBq (200 mCi) with 8 week interval
 - ⁶⁸Ga-DOTATATE PET/CT scans to establish the patients disease expresses SSR2 and ensure adequate uptake (theranostic)

(Hope et al, JNM 60, 2019)

S. Cheenu Kappadath, PhD

¹⁷⁷Lu-DOTATATE/DOTATOC

- Dosimetry for approval based on planar multi-time point dosimetry
- NO patient specific dosimetry calculations for SOC treatment plans
 - Netter-1 Trial Objective Response Rates ~18%
- Need to develop practical schema for patient specific dosimetry to answer:
 - How do we safely prescribe more than 4 cycles of Tx? ← Track dose to OAR
 - Can we improve the objective response rates (NETTER-1 ~18%)? ← Track dose to tumors
 - Very challenging to perform multi-timepoint imaging for dosimetry spanning 0 to 168 h after each treatment cycle ← Simplified schema needed

Case Report: 68Ga DOTATOC PET/CT scans of patient that underwent 7 cycles of Lu177 treatment in 5 year span illustrating the "waxing and waning" pattern of disease

(Puranik et al, Case Reports 1, 2015)

ABFM 2020

24 h

¹⁷⁷Lu-DOTATATE/DOTATOC dosimetry

- 20 patients, 4 cycles → 80 Tx
- 3 time-point SPECT/CT (4, 24, 96-120 h) after each Tx were acquired

Recommendations:

- 1st cycle multi-time point SPECT/CT for patient-specific <u>kinetics</u>
- Use single time-point SPECT/CT @ 24 h for <u>uptake</u> in subsequent cycles
- Error in residence times ~16%

WMI Phys 5, 2018)

Average Kidney Absorbed Dose (Gy)

Language Midney Absorbed Dose (Gy)

Language Mid

4 h

S. Cheenu Kappadath, PhD

(Willowson et al, EJNMMI Phys 5, 2018)

¹⁷⁷Lu-DOTATATE/DOTATOC dosimetry

■ 29 treatments, 4 cycles → 116 Tx

• 6 time-point SPECT/CT (24, 48, 72, 96, 120, and 144 h) after each Tx were

acquired

Recommendations:

- Population-based S-values can be used (<u>kinetics</u>)
- Single SPECT/CT at 4 d (96 h) P.I. to measure the uptake
- Error in residence times < 10%-20%

20% t₁ = 72 h 20% t₁ = 96 h 20% t₂ = 120 h 20% t₃ = 100 h 20% t₄ = 120 h 20% t₅ = 100 h 20% t₅

FIGURE 3. Percentage deviation of approximation $\hat{u}(r_0, t) = u(r_0, t) \times 2 \times I_0/(2)$ from $\hat{u}(r_0)$ vs. actual time integral $\hat{u}(r_0)$ for several and $r_0 + 2r_0$ and $r_0 + 2r_0$ from $r_0 + 2r_0$ fr

(Hanscheid et al, JNM 58, 2018)

90Y-radioembolization or SIRT

Role of SPECT in EBRT

- Use functional NM imaging to assess normal organ function and its spatial distribution during EBRT/PBRT treatment planning dosimetry
 - Goal is to preserve organ function after intervention

Assessment & Dosimetry Planning Phase

- •Radiopharmaceutical imaging
- •FDA approved tracer
- •SOC imaging
- •Assess normal tissue function and distribution
- •Functional considerations included for Planning Dosimetry

<u>Treatment & Verification</u> <u>Dosimetry</u>

- •SBRT/PBRT/IMRT
- •Image processing; fusion; dosimetry; etc.
- •Voxel dosimetry; DVH; D, BED, other metrics

Follow-up Imaging & Labs

- Toxicity assessments
- Response assessments
- •Follow-Up duration

S. Cheenu Kappadath, PhD

AAPM 2021

- Lung EBRT/PBRT
- ^{99m}Tc-MAA to assess perfused lung tissue for RT planning of lung cancer patients

- Liver EBRT/PBRT
- ^{99m}Tc-Sulfur Colloid and ^{99m}Tc-mebrofenin to assess functioning normal liver tissue for RT planning of liver cancer patients

AAPM 2021 25

Summary

Quantitative SPECT/CT has come to maturity

Role of SPECT/CT in RNT

- Central to the development and advancement of new and existing RNT
- Time to focus on the personalized treatment planning based on patientspecific physiology and tumor characteristics
- Need to demonstrate improvement in treatment efficacy with patientspecific dosimetry
 - Prospective clinical studies that incorporate dosimetry measurements
- Need for standardization and consistency in practice

AAPM 2021 28

Summary

Quantitative SPECT/CT has come to maturity

Role of SPECT/CT in Radiation Therapy

- Adjust treatment plan based on spatial information of normal tissue function to decrease OAR dose and improve therapeutic ratio
- Need to characterize the quantitative changes in normal tissue function based on dose delivered
- Need to demonstrate mitigation of risk associate with toxicity when treatment plans include functional information

AAPM 2021 29