Evolution of SPECT from Qualitative to Quantitative imaging

AAPM 2021: 63rd Annual Meeting & Exhibition

John Dickson Ph.D. Consultant Medical Physicist, Associate Professor University College London, UK

r

Summary The road to quantitative SPECT

- Introduction to SPECT
- Equipment evolution
- Software evolution
- New applications and the need for quantitative SPECT

An Introduction to SPECT

SPECT: Single Photon Emission Computer Tomography

A Nuclear Medicine Technique

SPECT Performed on a gamma camera

- Typically two rotating detectors acquiring data for 20-30 minute
- Use of radiopharmaceutical to image in-vivo physiology
 - Bone turnover
 - Myocardial perfusion
 - Dopamine Transporter

Image Courtesy of Siemens Healthineers

But I've seen quantification in SPECT, so what's new?

Semi-quantification

- Image interpretation mostly based on image appearance
- Some 'semi-quantification' performed i.e. relative to a region within the image and/or database
 - e.g. specific tracer uptake in striata compared to nonspecific uptake elsewhere

IRChangAC REGISTERED Transa

	Striatum Right SBR	Striatum Left S
ed	+3.21	+3.29
1 SD)	+3.66 (±0.40)	+3.73 (±0.42)
n	-12%	-12%
	-1.11	-1.03

Equipment Evolution

Attenuation correction

- Cardiac SPECT.
- Looks at regional blood flow homogeneity in myocardium
- Big patients show inhomogeneities because of photon attenuation
- Attenuation correction with transmission sources
- Attenuation correction with low dose CT

Evolution of SPECT/CT

1999 - Before PET/CT Slow rotation Low Tube Current Thick 1cm slice

Semiconductor (CZT) Technology

- Smaller detector = more innovative designs
- Energy and spatial resolution improvements
- Increased sensitivity
- More later

esigns ements

Images courtesy of GE Healthcare and Spectrum Dynamics

Software Evolution

Iterative Reconstruction

- Traditionally SPECT was reconstructed using filtered back projection (FBP)
 - Streak artefacts
 - Difficult to incorporate corrections for physical effects
- Iterative reconstruction has become increasingly popular since the introduction of SPECT/CT
 - Default

Filtered Back Projection

Iterative Reconstruction

Corrections: Attenuation

- Attenuation can be problematic in larger patients
 - Myocardial perfusion
- CT is a map of attenuation
- Bi-linear correction of attenuation at CT and SPECT photon energies
 - e.g. one linear relationship < 0 HU and another > 0 HU
 - Changes with radionuclide
- Apply in iterative reconstruction

Scatter Correction

- Scatter correction mostly done through multiple energy window estimation of scatter contribution
- Advanced Monte Carlo based solutions now available.

Ichihara et al J. Nucl Med (1993), 2216-2221

Spatial Resolution The largest degradation of quantification

- SPECT resolution is typically 8-10 mm
- Can account for resolution losses in iterative reconstruction
 - Improves resolution
 - Improves noise characteristics
 - Can lead to artefact
- - Partial Volume Correction

Extra resolution improvements can be made by deconvolution or other methods

PET/CT vs SPECT/CT Can SPECT/CT be fully quantitative?

Corrections	PET/CT	SPECT/CT
Attenuation	Yes	
Scatter	Yes	
Resolution	Yes	
Sensitivity Calibration	Yes	

PET/CT vs SPECT/CT Can SPECT/CT be fully quantitative?

Corrections	PET/CT	SPECT/CT	
Attenuation	Yes	Yes	
Scatter	Yes	Yes	
Resolution	Yes	Yes	
Sensitivity Calibration	Yes	Yes	

SPECT/CT can be a fully quantitative (kBq/ml) modality

Applications

Molecular Radiotherapy (MRT)

- - Many also emit gamma photons which can be imaged
- \Rightarrow organ/tumour dose

Neuroendocrine Tumours Lu-177 Peptides

Hepatic mets. Y-90 Microspheres

Prostate Ca Lu-177 PSMA

• MRT = Beta or Alpha labelled radiopharmaceutical giving targeted therapy

Can use multiple time point imaging to determine time vs activity curves

MRT Dosimetry

MIRD

$\bar{D} = \tilde{A} \times S$

- D: Mean absorbed dose (organ, tissue or tumour)
- Ã: Cumulated Activity
- S: MIRD S-factor gives radionuclide specific absorbed dose per unit activity

Dosimetry Historically

- Multiple time point 2D imaging
 - Geometric mean to of region of interest counts to account for attenuation
- **Occasional SPECT**
 - To improve accuracy of quantification
- Use of an imaging standard to convert counts to activity
- Determine accumulated activity and then dose

Dosimetry using Quantitative SPECT

- Multiple time point imaging
- Quantitative SPECT (kBq/ml)
- 3D Segmentation of tumours and organs at risk
- Registration of multiple time point data
- Real Time vs activity curves based on 3D Data
 - Inbuilt sensitivity calibration to directly give kBq vs time
- Organ and tumour doses

There are multiple commercial softwares that can help you to do this

Dosimetry is a key application of quantitative SPECT

But there is more!

Theranostics

- Labelling a therapeutic with a pure gamma emitting radionuclide we can:
 - Stage
 - Assess disease progression
 - Look at treatment response
- Qualitative SPECT
 - Visually assess changes
- Quantitative SPECT
 - Look at quantitative change in tumour uptake
 - Look at total tumour burden Sum of volumes x activities

0.29 I	0.66		-0.31	Р		1	
Previous IRAC Coronals		Previous IRAC Sagittals		Previous IRAC Trans	saxials	Previous II	RAC MIP
All Compare Hide All Hide Data Current		Date: Jun 20. Gender: F Height: 165 cm	, 2018 10:14:25 AM 1		Weigh Injected Dose Sensitivity	t: 74.0 kg :: 152.9 mCi /: 163.64 cnt/min/uCi	
SPECT SUVbw [Quantification data]	Volume (mi)	Max (g/ml)	Mean (g/ml)	Total	% Injection dose	Min (g/ml)	Std.Dev.
O lesion	66.0	2.26	1.01	66.8	0.0902	0.412	0.391
Hide All		Date: Jan 17. Gender: F Height: 165 cm	, 2018 12:51:15 PM		Weigh Injected Dose Sensitivity	t 74.0 kg : 150.8 mCi / 163.64 cnt/min/uCi	
SPECT SUVbw [Quantification data]	Volume (mi)	Max (g/ml)	Mean (g/ml)	Total	% Injection dose	Min (g/ml)	Std.Dev.
lesion	50.6	5.07	2.05	103.5	0.140	0.819	0.836

Bone **Orthopaedic and Cancer**

- Prosthetic loosening
 - Longitudinal imaging
- Degeneration \bullet
- Total (bone) metastatic burden
 - Sum of uptake-volume products within a body scan

Cardiology **Amyloidosis and Perfusion**

- Cardiac Amyloidosis
 - 2D DPD imaging
 - Qualitative scale
- Perfusion
 - Typically assess relative perfusion within heart
 - Absolute uptake could provide benefits

• Option for 3D quantitative imaging to characterise level of amyloidosis

Challenges

Challenges New technology brings new challenges

- SPECT field of view is 40cm
 - Small field of view imaging can be quick
 - Larger field of view imaging e.g. total body is much slower
 - But ring geometry CZT SPECT scanners will significantly reduce this time
- Need to consider time of imaging
 - Radiopharmaceutical uptake depends on timing
- Need to consider interacting drugs
 - Not important for visual assessment

• And there is the sensitivity calibration to perform too and recording of administration time and activity

Summary

- Quantitative SPECT is available now!
 - Due to hardware and software improvements
- It requires a little more work
 - Tasks
 - Scan time
- Really valuable applications
 - Dosimetry and theranostics
 - Other applications too

That you for watching !

