Hands On Workshop Simulated Error Training for Physics Plan Reviews

University of Colorado Anschutz Medical Campus

Leah Schubert, Ph.D.

University of Colorado Anschutz Medical Campus

Leah Schubert, Ph.D.

Conflict of Interest Disclosure

I have no conflicts of interest related to this presentation

Learning Objectives for this Presentation

- Introduce the concept of simulated error training
- Present educational techniques on which simulated error training is based
- Describe early uses of simulated error plans in our field
- Identify applications to develop, assess, and improve physics plan reviews

What is Simulated Error Training?

- Method to practice error detection in situations where the occurrence of error is low
- Well suited for physics plan reviews

What is Simulated Error Training?

- What does it mean to be good at performing a physics plan review?
- You catch errors
- Experience in catching rare, potentially hazardous errors

Why Can it be Hard to Catch Errors?

- Physics plan reviews, needles in a haystack
- Complexities in the planning process
- Errors, potential to cause mistreatment, plan quality, documentation compliance
- Subtle to detect, surprising manifestations
- How do we know we can catch these errors?

Interest in Simulated Error Training

- Survey of Program Directors of CAMPEP-accredited therapy physics residency programs
- Determine the current state of residency training in physics plan reviews
- Most common training methods in use
 - Observe staff physicists performing plan reviews (96%)
 - Perform supervised plan reviews (93%) (either for training or clinical practice)
 - Use a checklist (80%)

Interest in Simulated Error Training

- Simulation plans with embedded errors to train residents
 - Currently using: 19%
 - Would use: 71%
- Largest difference out of all of the training methods presented
- High interest for residency programs

13

Challenges to Implementation

Resource intensive

- Anonymize patients
- Re-create plans
- Embed errors
- Re-export and write up the chart documents
- Updates and maintenance
- Pool resources as a group

What is the Basis of Simulated Error Training?

- Based on educational techniques
- Simulation-based education
 - Aviation, military fields
 - Medical education
- Deliberate practice
 - Method of improving performance
 - Applies to any field, in and out of the workplace

Simulation-Based Education in Medicine

- Simulates real-life scenarios in a low risk environment
- Allows one to acquire and practice clinical skills without using real patients
- Training and assessment
- Examples in medicine
 - Simulation centers in medical schools

IV placements, cardiac arrest response

Physical exams, code response, IV placements

17

Simulation-Based Education in Radiation Oncology

- Use in the radiation oncology field
 - Training for emergency on-call treatments
 - Communication and interpersonal skills
 - Radiation oncologist plan reviews
- Embedded errors can potentially happen in real life
- Ability to assess and improve performance without risk to the patient

lazur, et. al "Improving Radiation Oncology Providers' Workload and Performance: Can Simulation-Based Training Help?" PRO 2017 rawn, et. al "Multidisciplinary Medical Simulation: A Novel Educational Approach to Preparing Radiation Oncology etselents for Oncologic Emergent On-Coll Treatments" UROBP 2014 et. al "Assessing Interpersonal and Communication Skills in Radiation Oncology Patient Program" UROBP 2014

Measure Error Detection Rate of Practicing Physicists

- Gopan et. al published early experience
- Aimed to prospectively measure detection rate
- 8 physicists performed reviews on 6 plans with embedded errors
- Errors were detected in 67% of reviews [58-75% CI]
- Range from more easily caught (planned dose) to not well caught (incorrect CT dataset)
- First to quantify the error detection rate of physics plan reviews

20

Facilitate Education and Measure In-House Checklist

Mayo Arizona simulated error plan suite

- to facilitate education of new staff and residents
- to measure the efficacy of an in-house electronic checklist
- 20 simulated error plans were created (21 errors embedded)
- 9 physicists reviewed over a 5 week period
- Useful to inform guidelines for physics plan reviews and further develop checklist

cs chart check: A tool to improve error detection" presentation at the 2017 Arizona AAPM Chapter Meeting

rs	Error Category	Group Detection Rate
	Bolus Correct	88.89%
	Contours Correct	44.44%
	Planning Approach	100.00%
	Rx Dose/Fxs	88.89%
	Rx Location	77.78%
	Bolus Selected	88.89%
	SPC Consult Present (4DCT)	100.00%
	SPC Contains All Info	100.00%
	Plan Approval Document Correct	66.67%
	Field Names	100.00%
	Bolus Documentation	88.89%
	Gate Info	77.78%
	Isocenter Shift	100.00%
	DRR Quality	66.67%
	Proper Tolerance Table Selected	88.89%
	Table Coordinates the Same for All Fields	88.89%
	Ref Point Equals Rx Dose	88.89%
	Secondary Dose Matches Rx	100.00%
	Total Dose Correct	100.00%
	Correct Number of Sessions	100.00%
	Imaging Matches Orders	100.00%
	Average	88.36%

Residency Training Curriculum

- University of Colorado primary tool for resident training curriculum
- 5 simulated error plans (23 embedded errors)
- Goal: fundamental skills to develop a method
- Focus on ways to enhance robustness
- Need to adapt according to changes in technology and processes
- Skills to perform a plan review in current clinic
- Create, evaluate, adapt plan review to any clinic

How Can Simulated Error Training Be Used in My Clinic?

Various uses from early experiences

- Robustness of current plan review practices
- Efficacy of new tools
- Foundation of training curriculum

Audience

- Residents
- New and existing staff physicists

Training and Competency Assessment

- Initial training
 - Residents: develop and fine-tune their method
 - New staff physicists: differences in software and equipment
- Ongoing training
 - New programs added, changing equipment/software vendors, significant software updates
 - Practice accreditation needs
- Competency assessment initial and ongoing
 - Method to objectively assess

29

Conclusions

- Being developed by AAPM WGPE
- Training tool based on established educational techniques
- Early experiences
- Several potential applications

University of Colorado Anschutz Medical Campus

Thank you!