

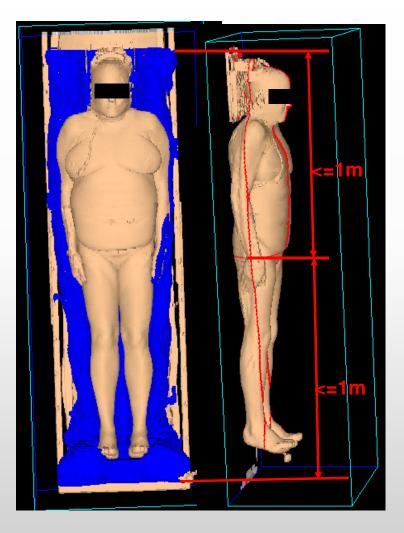
VMAT TBI at Cleveland Clinic

Bingqi Guo, PhD Cleveland Clinic Foundation

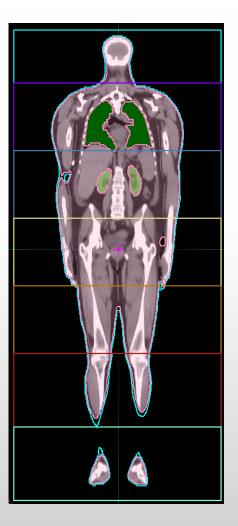
No Conflict of Interest

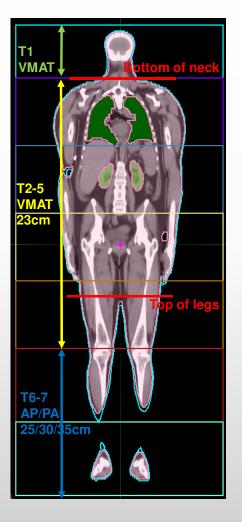
Background

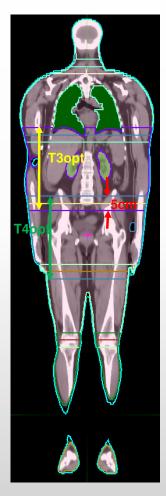
- VMAT-TBI program
 - To replace the classic whole body field-technique for full dose TBI
 - 26 patients (4 pediatric patients) 6/2020-5/2021
- Why VMAT-TBI
 - Patient comfort
 - Better control of dose distribution
 - IGRT capability


- Equipment
 - Philips Big Bore CT
 - Varian Truebeam Linac
 - Pinnacle TPS (v16.2)
 - MIM, Mosaiq
 - Immobilization devices
 - Full body vacuum bag
 - Head plate and 3 point (open face) mask

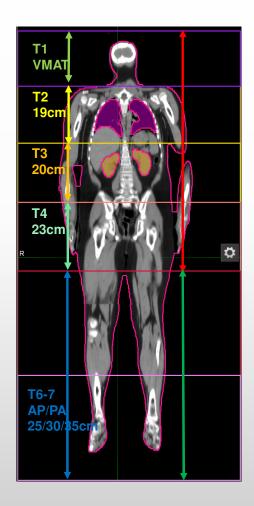
- Equipment limitations (for TBI)
 - CT scan length Limit (125cm)
 - Scan in head-first supine (HFS) and feet-first supine (FFS) directions
 - Linac table travel Limit (110cm)
 - Treat in HFS and FFS directions
 - Field size & MLC travel distance limitations
 - Multi-isocentic VMAT


- Patient Setup
 - Supine, 3 point open face mask, arms by body side, legs straight
- CT Scan
 - Body protocol w 5mm slice thickness and extended FOV
 - HFS CT: Top of head to below pelvis
 - FFS CT: bottom of feet to above pelvis
 - Mark laser origin point in the pelvis
 - <=1 m to each end for Linac clearance
 - Reference point for setup in HFS and FFS directions

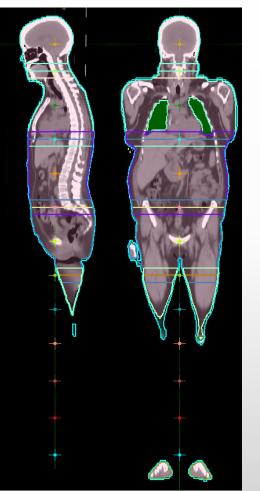

- Image processing
 - Create whole-body (HFS) CT
 - Stitch the HFS CT and FFS CT using a MIM workflow
 - Registration in the pelvis
 - Used to
 - Create a whole body VMAT TBI plan
 - Export beams to be delivered in HFS direction
 - Create whole body FFS CT
 - Rotate CT and correct patient orientation Dicom label using MIM tools
 - Used to
 - Export beams to be delivered in FFS direction

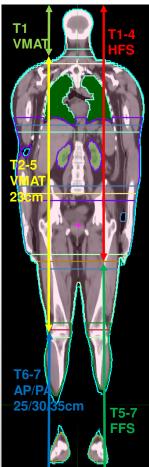


- Regions of interest (ROIs)
 - Lungs and kidneys
 - Atlas based auto-segmentation
 - PTV and sub-targets
 - Auto segmentation using a MIM workflow
 - PTV=body contracted 5mm (3mm each direction) lungs and kidneys
 - Divide into multiple sub-targets

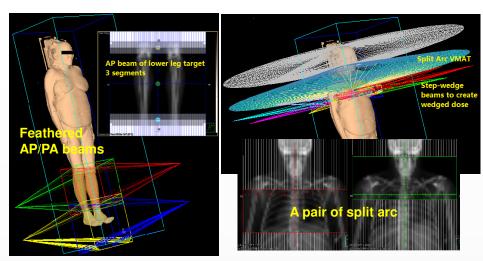


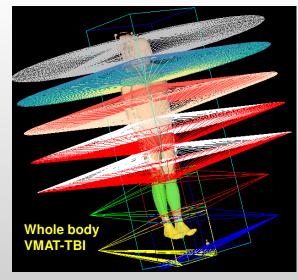
- ROIs
 - Sub-targets
 - Specify bottom of neck and top of legs
 - VMAT: from head to top of legs
 - AP/PA: rest of the body (legs and feet)
 - PTV divided into sub-targets T1-Tn
 - T1 head and neck
 - Other VMAT sub-targets 23cm in length
 - A look up table to determine AP/PA subtarget length (25, 30, or 35cm)
 - n=6-8
 - Expands Tx (x=1:n) 2.5cm in sup & inf directions
 - 5cm target feathering zone

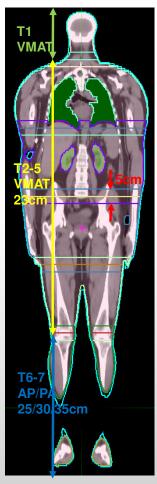


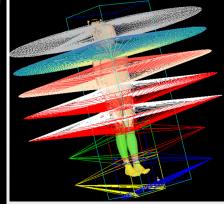


- ROIs
 - Sub-targets
 - Pediatric patients
 - Reduce VMAT sub-target length to place junction between lungs and kidneys
 - Large-sized patients (width > 50cm)
 - Reduce VMAT sub-target length to cover arms
 - 5cm increase in patient width -> reduce
 VMAT sub-target length by 1 cm

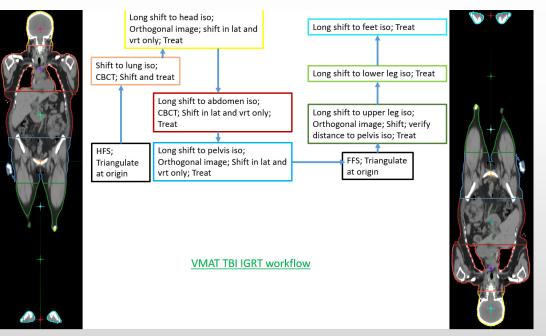



- Points of interest (POIs)
 - Isocenters and junction points
 - Same Vrt and Lat, only Long shift
- Sub-targets/isocenters
 - By beam type
 - VMAT sub-target
 - AP/PA sub-target
 - By treatment orientation
 - HFS sub-targets: iso sup to laser origin
 - FFS sub-targets: iso inf to laser origin




- Whole body VMAT-TBI plan
 - 6X, collimator 90 degree
 - Feathered AP/PA beams for legs/feet
 - Sequentially optimize VMAT sub-targets
 - Split arc technique
 - Wedged dose at the junction as base dose
 - 200 MU/min at lung
- Planning Objectives
 - Prescription:
 - 1.65 Gy/Fx x 8 or 1.5 Gy/Fx x 8
 - Optimization
 - PTV V95>95%
 - PTV V110 ALARA
 - Mean lung dose < 10Gy (adult) or 8Gy (pediatric)
 - Mean kidney dose < 6Gy

- Sub-targets
 - Why 23cm length for VMAT sub-targets?
 - Plan quality best when beam width <14.5cm x 2
 - Set 28cm length for (sub-target + target feathering zone) = set 23cm length for subtarget
 - Anatomically separates body into thorax, abdomen and pelvis
 - Why target feathering zone
 - To improve delivery robustness to set up uncertainties



- Plan export
 - Split the whole body VMAT-TBI plan into
 - HFS plan: beams with isocenter sup to laser origin
 - FFS plan: beams with isocenter inf to laser origin
 - From whole-body plan to FFS: use pinnacle script to rotate collimator angle 180 degrees and mirror gantry angle L/R for all control points

IGRT workflow

Imaging every fraction

- Time:
 - CT Simulation: 1 hr
 - Image processing, critical structures, PTV and sub-targets, and isocenters: 10 min
 - Planning: 1 day
 - Plan export: 3-4 hours
 - QA, (physics and therapy) chart checks: 2-3 hrs
 - Treatment delivery: 1 hr / fx

Summary

- VMAT-TBI at Cleveland Clinic
 - Hybrid VMAT
 - Create the whole-body CT by registering the head-first CT and the feet-first CT
 - Divide the whole body into sub-targets for planning
 - Optimal sub-target division depends on patient anatomy and TPS/Linac
 - Target feathering zone to improve plan robustness to setup uncertainties
 - IGRT to improve delivery accuracy
 - Automatic scripts to improve efficiency

