VMAT TBI: Stanford Experience

unnin munn

Nataliya Kovalchuk, PhD Stanford University School of Medicine

where the second and the second second second

Outline

- Stanford TBI patient volume and existing conventional techniques
- Challenges of 2D TBI techniques
- Stanford VMAT TBI Process:
 - Simulation on rotational platform
 - Treatment planning:
 - Dosimetric comparison between VMAT and 2D plans
 - Automation of treatment planning
 - Dosimetric comparison between auto-plans and manual plans
 - Treatment QA and delivery
- Conclusions

Stanford conventional TBI techniques

• Annual patient volume in 2018:

Total TBI patients	163	
Single fx	67	41%
>1 fx	96	59%
Adult	127	78%
Pediatric	36	22%

- 3 conventional techniques used:
 - AP/PA standing @~5.7m SSD +/- lung blocks and CW boosts
 - RLat/LLat sitting @~5.7m SSD, no lung blocks
 - AP/PA @~2m SSD on the floor for young peds, lung blocks

 AP/PA TBI setup
 Electron CW boost inserts

Challenges with 2D TBI technique

- Uncomfortable for frail patients in standing position
- Unable to treat older children requiring anesthesia
- Extra-large vault is required for 2D technique
- Compensator generation/block cutting required for photon/electron fields
- Tedious simulation and planning requiring caliper measurements and manual entry of planning parameters – highly error-prone process
- Large dosimetric uncertainty

Children's Oncology Group (COG) survey

- COG TBI workgroup conducted survey in 2020 on TBI techniques for physicists and physicians
- 75% of physicians (n=85) would like to introduce VMAT or Tomo TBI in their clinics
- 100% of physicians would like to reduce the lung dose for myeloablative regimens
- Only 6 US institutions adapted VMAT TBI and 3 institutions adapted Tomo TBI

Intensity-modulated TBI

Sagittal "arc" UCSF

- Modern treatment planning and treatment techniques in TBI
 - Helical Tomotherapy (UW-Madison, City of Hope, U of Arkansas)
 - Single isocenter sagittal arc composed of >20 static beams with patient on the floor (UCSF)
 - Multi-isocenter, axial VMAT-based technique (UTSW, Cleveland Clinic, City of Hope, Ohio State, Toledo, U of Alabama, Stanford)

FIG. 1. Supine patient setup for modulated-arc total body irradiation with N beams.

about

2 m SSD

Gantry rotation

Setup

points

Axial VMAT TBI at Stanford Stanford

Patient selection criteria for VMAT TBI at Stanford

- Patients under anesthesia
- All pediatric patients on reduced intensity regimen (gonadal sparing)
- Patients that are unable to stand for prolonged period
- Patients on scleroderma trial
- Patients with prior treatments and need of OAR sparing
- Patients requiring simultaneous boosts

Stanford VMAT TBI: SIM

- Full body scan in whole body bag on Siemens PET/CT scanner with 4-5 mm slice thickness
- Knee fix, foot fix, arms tight to the body
- Matchline b/w HFS and FFS determined at SIM:
 - Patient height < 115 cm VMAT only (3 isocenters)
 - Patient height > 115 cm VMAT (3 isocenters) + AP/PA(1-2 isocenters) on Spinning Manny

Figure 1. In-house developed rotational couch-top enabling patient position transition from HFS to FFS.

Stanford VMAT TBI: Contouring

- Myeloablative regimen: sparing lungs, kidneys, lenses
- Reduced Intensity Conditioning: sparing lungs, kidneys, lenses, brain, thyroid, ovaries/testes
- PTV_Body = (Body-3 mm) (Lungs+3 mm) – Kidneys – [other OARs]
- 5 mm flash/bolus is added during optimization

Name of Structure	Description
Human_Body	Search BODY in Eclipse
Human_Body-0.3cm	0.3 cm inner margin
Lungs	Lungs, remove tiny islands
Lungs_Eval	Lungs – 1cm
Lungs-2cm	Lungs – 2cm
Kidney_R/L, Kidneys	Kidneys, remove tiny islands
Kidneys-1cm	Kidneys-1cm
Ovary_R/L	Ovaries
Scrotum, Testes	Scrotum, testes
Brain	Brain, remove tiny islands
Brain-0.5cm	Brain-0.5cm
Brain_Eval	Brain-1cm
Brain-2cm	Brain-2cm
Brain-3cm	Brain-3cm
PTV_Body	(Human_Body-0.3cm) – Kidneys– (Lungs+0.3cm) – (Ovaries+1cm include bone) or (Scrotum+2cm) – (Brain-0.5cm)
Matchline	Plane at the level of pivot bolt center
TS_PTV_VMAT	Cut PTV_Body at matchline, crop 0.5cm from skin
Bowel	Bowel bag
Lens_R/L	Lenses
Skin	3mm from Human Body

Stanford VMAT TBI: Beam Placement

- 3 VMAT isocenters in HFS 6MV/10MV (head, chest, pelvis)
- 1-2 AP/PA isocenters in FFS 6MV (upper legs, lower legs)
- Pelvis VMAT iso and Upper Leg AP/PA iso's are equidistant from matchline
- >=2-5 cm overlap in junctions for VMAT
- Head iso (3-4 arcs)
- Chest iso (3-4 arcs)
- Pelvis iso (2-4 arcs)
- Skin match for AP/PA
- AP/PA fields have 90° coll for FiF

Stanford VMAT TBI: Optimization

- FiF for AP/PA
- Set AP/PA dose as base for VMAT optimization
- Optimizer auto-feathers beam junctions in VMAT
- Dose rate at 100-200 MU/min for Head/Chest iso to keep average dose rate <20 cGy/min for lungs

Structure	Dosimetric parameter	Limit (2 Gy Rx)	Limit (12 Gy Rx)
PTV_Body	D90%>=	200 cGy (100%)	1200 cGy (100%)
	Dmax<=	240 cGy (120%)	1440 cGy (120%)
	V110%<=	5%	5%
Lungs_Eval (Lungs-1cm)	Dmean<=	90 cGy (45%)	540 cGy (45%)
Lungs	Dmean<=	120 cGy (60%)	720 cGy (60%)
Kidneys	Dmax<= Dmean<=	210 cGy (105%)	1260 cGy (105%) 720 cGy (60%)
Bowel	Dmax<=	210 cGy (105%)	1260 cGy (105%)
Lenses	Dmax<=	180 cGy (90%)	1080 cGy (90%)
Testes/ovaries	Dmean<= Dmax<=	50 cGy (25%) ALARA (required <100 cGy)	
Brain_Eval (Brain-1cm)	Dmean<=	150 cGy (75%)	
Thyroid	Dmean<=	150 cGy (75%)	

Stanford VMAT TBI: QA and Treatment Delivery

- QA: portal dosimetry Gamma>90% within 3%/2mm; Mobius 3D Gamma>90% within 3%/3mm
- kV/kV match for Chest iso, CBCT
- Fill out final parameters for Couch positions in Shift Spreadsheet
- MV port added to arc after each iso shift for verification
- Treatment time: 35 57 min for 25 patients treated since Oct 2019
- Nanodots on matchline

Nic Ngo

For 10 patients treated with VMAT TBI conventional 2D TBI plans were created

Nic Ngo et al, (submitted to Medical Dosimetry)

- Overall, the coverage was compromised for 2D plans
- On average, mean lung dose with 2D plans was 25.6%±11.5% higher than that with VMAT TBI plans
- Additionally, VMAT TBI plans spared kidneys, brain, thyroid, testes/ovaries where 2D plans delivered prescription dose

	VMAT TBI						2D TBI					Diff	ierence (VN	1AT-2D)	
	PTV D90	PTV Dmax	PTV V110%	Lungs Dmean,%	Lungs-1cm Dmean, %	PTV D90	PTV Dmax	PTV V110%	Lungs Dmean,%	Lungs-1cm Dmean, %	PTV D90	PTV Dmax	PTV V110%	Lungs Dmean,%	Lungs-1cm Dmean, %
Patient 1	100.0%	114.6%	0.1%	41.8%	26.6%	93 .8%	122.0%	1.4%	90.0%	75.9%	6.2%	-7.4%	-1.3%	-48.2%	-49.3%
Patient 2	100.0%	120.5%	2.2%	58.3%	37.3%	91.3%	122.5%	0.7%	86.7%	82.1%	8.8%	-2.0%	1.5%	-28.4%	-44.8%
Patient 3	100.0%	120.3%	2.9%	52.5%	40.3%	95.3 %	123.2%	0.5%	89.0%	84.0%	4.7%	-2.9%	2.4%	-36.5%	-43.7%
Patient 4	100.0%	114.7%	0.3%	54.4%	34.1%	90.0%	118.5%	0.4%	81.9%	73.0%	10.0%	-3.8%	-0.1%	-27.5%	-38.9%
Patient 5	100.0%	117.5%	0.5%	54.6%	35.8%	93.4%	112.8%	1.9%	80.8%	70.4%	6.6%	4.8%	-1.4%	-26.2%	-34.6%
Patient 6	100.0%	121.0%	0.9%	59.4%	36.5%	95.8%	115.6%	0.2%	75.4%	62.6%	4.3%	5.4%	0 .7%	-16.0%	-26.1%
Patient 7	100.0%	127.3%	5.3%	59 .8%	45.7%	95.0 %	112.9%	1.8%	72.0%	64.1%	5.0%	14.5%	3.5%	-12.2%	-18.4%
Patient 8	100.0%	120.4%	1.6%	59.9 %	37.5%	92.6%	111.0%	0.0%	72.0%	61.2%	7.4%	9.4%	1.6%	-12.1%	-23.7%
Patient 9	100.0%	117.2%	1.8%	53.4%	35.8%	98.5%	118.2%	8.6%	84.2%	69 .4%	1.5%	-1.0%	-6.8%	-30 .8%	-33.6%
Patient 10	100.0%	114.2%	0.1%	56.4%	35.3%	93 .4%	111.2%	0.0%	74.3%	63 .4%	6.6%	3.1%	0.1%	-17.8%	-28.1%
Average	100.0%	118.8%	1.6%	55.1%	36.5%	93.9%	116.8%	1.5%	80.6%	70.6%	6.1%	2.0%	0.0%	-25.6%	-34.1%
Min	100.0%	114.2%	0.1%	41.8%	26.6%	90.0%	111.0%	0.0%	72.0%	61.2%	1.5%	-7.4%	-6.8%	-48.2%	-49.3%
Max	100.0%	127.3%	5.3%	59.9%	45.7%	98.5%	123.2%	8.6%	90.0%	84.0%	10.0%	14.5%	3.5%	-12.1%	-18.4%
SD	0.0%	4.0%	1.6%	5.4%	4.8%	2.4%	4.8%	2.6%	6.9%	8.1%	2.4%	6.7%	2.9%	11.5%	10.1%
p-value											8.115E-06	0.226	0.444	2.965E-05	1.024E-06

Stanford University School of Medicine

Nic Ngo et al, (submitted to medical dosimetry)

Stanford University School of Medicine

Blomain, Kovalchuk at al, PRO 2020

Gonadal sparing: 2D vs VMAT

в

Structure	Dosimetric parameter	2D conventional plan	VMAT plan
PTV_Body	D90%=	1.9 Gy (95.3%)	2 Gy (100%)
	Dmax=	2.5 Gy (123.2%)	2.4 Gy (117.5%)
	V110%=	0.5%	5%
Testes	Dmean=	1.36 Gy (67.8%)	0.44 Gy (22.3%)
	Dmax=	1.56 Gy (78%)	0.72 Gy (35.9%)

С

D

Structure	Dosimetric parameter	2D conventional plan	VMAT plan
PTV_Body	D90%=	1.9 Gy (95.3%)	2 Gy (100%)
	Dmax=	2.33 Gy (116.5%)	2.4 Gy (117.5%)
	V110%=	9.2%	0.2%
Ovaries	Dmean=	1.47 Gy (73.5%)	0.65 Gy (32.4%)
	Dmax=	1.60 Gy (80%)	0.88 Gy (43.9%)

Figure 2 Dosimetric comparison between 2D and VMAT TBI plans for the boy as shown in dose volume histograms (VMAT plan in *triangles*, 2D plan in *squares*) (A) and tabulated form (B), and for the girl (C and D).

Figure 1 Volumetric modulated arc therapy (VMAT) total body irradiation (TBI) beam arrangement and dose distribution (color wash) on coronal view for boy (left) and girl (right).

Blomain, Kovalchuk at al, PRO 2020

Challenges in intensity-modulated TBI

- Equipment limitations
- Special treatment geometry considerations
- Planning time
 - Up to 3 days for VMAT-based TBI

Automation of the treatment planning process for VMAT TBI using the Eclipse API framework

https://github.com/esimiele/VMAT-TBI

Eric Simiele

VMAT TBI auto-planning script

	V IVI		anning script	Theip	-
	St	tructure Set ID: Pt8 c	ору		
Dose per fraction (cGy/	fraction):	200	Scleroderma	a trial (Rx = 800 cGy)	E E
Number of	fractions:	6	Non-myeloablative reg	imen (Rx = 200 cGy)	: 🗆
Rx do	ose (cGy):	1200	Myeloablative regir	men (Rx = 1200 cGy)	. 🗸
Add flash: 🗌					
TS Generation Beam P	lacement	Optimization Setup	Plan Preparation		T
		Structures	to Spare		
Add Structure	•	Add Defa		Clear List	-
				Citor List	
Structure Name	е	Sparing Type	Added Margi	n (cm)	
Structure Name	e v	Sparing Type Mean Dose < Rx Dos	Added Margi e v 0.3	n (cm) Clear	~
Structure Name Lungs Kidneys	e v	Sparing Type Mean Dose < Rx Dos Mean Dose < Rx Dos	Added Margi e v 0.3 e v 0	n (cm) Clear Clear	Ì
Structure Name Lungs Kidneys	2 	Sparing Type Mean Dose < Rx Dos Mean Dose < Rx Dos Dmax = Rx Dose	Added Margi e v 0.3 e v 0	n (cm) Clear Clear	
Structure Name Lungs Kidneys Bowel	e v v	Sparing Type Mean Dose < Rx Dos Mean Dose < Rx Dos Dmax ~ Rx Dose	Added Margi e v 0.3 e v 0 v 0	n (cm) Clear Clear Clear	
Structure Name Lungs Kidneys Bowel Ienses	e 	Sparing Type Mean Dose < Rx Dos Mean Dose < Rx Dos Dmax ~ Rx Dose Mean Dose < Rx Dos	Added Margi e v 0.3 e v 0 v 0 e v 0.1 	n (cm) Clear Clear Clear	
Structure Name Lungs Kidneys Bowel Ienses	e v v v	Sparing Type Mean Dose < Rx Dos Mean Dose < Rx Dos Dmax ~ Rx Dose Mean Dose < Rx Dos	Added Margi e v 0.3 e v 0 0 e v 0.1	n (cm) Clear Clear Clear Clear	
Structure Name Lungs Kidneys Bowel Ienses	2 	Sparing Type Mean Dose < Rx Dos Mean Dose < Rx Dos Dmax ~ Rx Dose Mean Dose < Rx Dos	Added Margi e	n (cm) Clear Clear Clear Clear Clear	

100 × k Start VMAT TBI auto planning script Help Structure Set ID: Pt8 copy fraction (cGy/fraction): 200 Scleroderma trial (Rx = 800 cGy): Number of fractions: 6 Non-myeloablative regimen (Rx = 200 cGy): Rx dose (cGy): 1200 Myeloablative regimen (Rx = 1200 cGy): sh: 🗌 ion Beam Placement Optimization Setup Plan Preparation **Optimization Parameters** Scan RTSTRUCT and Add Constraints Add Constraint Clear List Constraint V (%) D (cGy) Priority cture PTV_VMAT v 100 Lower 1200 100 Clear ~ 0 1210 100 PTV_VMAT Upper Clear v 98 1202 100 PTV_VMAT Lower Clear Mean ~ 0 750 80 Clear neys Mean v 0 400 50 neys-1cm Clear v 0 1140 50 Upper Clear Set Optimization Constraints

- Binary plug-in to be used within Eclipse
 - Optimization structure generation
 - Plan generation
 - Beam placement
 - Optimization constraint
 assignment
 - Prepare optimized plan for physician approval and treatment
- Fast
 - Optimization structure generation – optimization constraint assignment → 30s
 - Significant reduction in time required for tedious tasks

Simiele, et al, (PRO, 2021)

VMAT TBI auto-planning script

Patien	t MRN:	\$testing		Do	se per fraction	(cGy/fraction):	200
		Open Patie	nt		Numbe	er of fractions:	6
Run coverage	check:					Rx dose (cGy):	1200
lax number optimiz	zations:	3		Run a	dditional optim	ization to lowe	r hotspots
		Copy and s	ave	each optim	iized plan: 🔽		
		Optin	niza	ation P	arameter	s	
Add Constrain	t	G	et Co	onstraints F	rom Plan		Clear List
1						1	
Structure	C	onstraint		V (%)	D (cGy)	Priority	
TS_PTV_VMAT	- 1	Lower	v	100	1200	100	Clear
TS_PTV_VMAT	~ 1	Upper	×	0	1210	100	Clear
TS_PTV_VMAT	• 1	Lower	v	98	1202	100	Clear
Kidneys	- 1	Mean	v	0	750	80	Clear
Kidneys-1cm	- 1	Mean	v	0	400	50	Clear
Lungs	- 1	Mean	v	0	600	90	Clear

										-			>
		P		f Onti	- miz	a	tion Lo	nn					
Dose calculate Elapsed time: Plan normalize Results of opt	d, normalizing plan 00:00:18 d! Evaluating plan (imization:	! qua	lity and upo	iating co	onsti	rai	.nts!	- P					
structure Id	constraint type	1	dose diff^2	(cGy^2)	1	cu	rrent pri	ority	cost	1 0	teos	(\$)	1
TS PTV VMAT TS PTV VMAT TS PTV VMAT Kidneys Kidneys-Cm Lungs-1cm Lungs-1cm Lungs-2cm Bowel Additional pla Dowel Additional pla TS PTV VMAT VM TS PTV VMAT VM	$ \begin{bmatrix} 1 & Cover \\ i & Upper \\ i & Upper \\ i & Lower \\ i & Mean \\ i & Mean \\ i & Mean \\ i & Mean \\ i & Mpen \\ i & I & Mpen \\ i & I & I & I & I \\ max & = 408.38 \\$		541078.8 13612267.4 1542.6 2627590.0 3596991.6 2049501.3 2939956.9 3333185.4 12006259.0			10 10 54 60 54 47 34			1 5410781.6 1361226744.3 1364259.2 141889891.4 122297716.0 122977058.7 12977058.7 12977058.7 1297715.1 158659713.1 408212804.4		1.1 3.9 0.0 1.8 1.9 1.2 6.2		
structure Id	constraint type	1	dose (cGy)	volume	(\$))	priority	1					
TS_PTV_VMAT TS_PTV_VMAT TS_PTV_VMAT	Lower Upper Lower Mean		1200.0 1210.0 1202.0 750.0	100.0 0.0 98.0 0.0			101 106 101 60	1					

- Stand-alone executable to be run outside Eclipse
- Run successive optimizations
- Update optimization constraints following each optimization
- Minimal user intervention
 - Picks up where the plug-in script left off
 - Autonomous
 - Multithreaded
 - Provides live updates
 - Time for 3 optimizations ~ 3-5 hours

Stanford University School of Medicine

(d)

Simiele, et al, (PRO 2021)

Table 1: Achieved plan quality for each metric considered in this work for the a) manual and b) auto treatment plans. All dose and volume values in a) and b) are expressed as a percentage of the prescription dose and PTV volume, respectively. A plan quality value of N/A indicates that this organ was not considered for sparing in this patient.

(a)						
			Manual tr	eatment plans		
Patient No.	D _{max}	V110%	Lungs D _{mean}	Lungs-1cm D _{mean}	Kidneys D _{mean}	Bowel D _{max}
1	114.5%	0.2%	55.7%	31.8%	67.6%	111.9%
2	121.0%	1.4%	56.7%	41.2%	65.0%	106.1%
3	119.5%	6.2%	55.0%	45.7%	N/A	N/A
4	116.5%	0.1%	60.0%	44.6%	N/A	110.3%
5	114.0%	0.0%	75.0%	60.6%	N/A	108.1%
6	122.5%	2.5%	65.0%	42.8%	60.0%	111.5%
7	128.5%	4.5%	60.4%	45.4%	66.3%	116.0%
8	121.5%	1.6%	62.5%	40.0%	72.5%	111.2%
9	116.0%	0.6%	65.0%	47.0%	70.0%	112.8%
10	113.9%	0.0%	58.3%	36.5%	65.0%	110.0%

Plan ten VMAT TBI cases manually and with developed scripts:

Dosimetric indices: •

Results

• Global D_{max}, PTV V110%, lungs and lungs-1cm D_{mean}, kidneys D_{mean}, and bowel D_{max} • Paired t-test

(-)

(b)

- Approximate planning time •
- Blinded physician review (60 ٠ total responses)

Patient No.	D_{max}	V110%	Lungs D_{mean}	Lungs-1cm D_{mean}	Kidneys D _{mean}	Bowel D_{max}
1	114.6%	0.1%	41.8%	26.6%	64.1%	110.0%
2	120.5%	2.2%	58.3%	37.3%	64.2%	111.2%
3	120.3%	2.9%	52.5%	40.3%	N/A	N/A
4	114.7%	0.3%	54.4%	34.1%	N/A	102.5%
5	117.5%	0.5%	54.6%	35.8%	N/A	112.4%
6	121.0%	0.9%	59.4%	36.5%	65.3%	111.6%
7	127.3%	5.3%	59.8%	45.7%	73.3%	114.2%
8	120.4%	1.6%	59.9%	37.5%	72.6%	115.0%
9	117.2%	1.8%	53.4%	35.8%	64.9%	112.3%
10	114.2%	0.1%	56.4%	35.3%	68.4%	103.3%

Auto treatment plans

Table 2: Mean and standard deviation, σ , of the difference in percent between the auto and manual treatment plans. In addition, the calculated p-value from a one-sided t-test is shown for each evaluated metric. A p-value < 0.05 was considered to be statistically significant in this study.

			<u></u>			
	\mathbf{D}_{\max}	V110%	Lungs D_{mean}	Lungs-1cm $\rm D_{mean}$	Kidneys D _{mean}	Bowel \mathbf{D}_{\max}
Mean	0.0%	-0.1%	-6.3%	-7.1%	0.6%	-0.5%
σ	1.6%	1.3%	6.9%	7.2%	3.7%	4.3%
p-value	0.969	0.750	0.018	0.013	0.598	0.703
			\			

Figure 3: Resulting coronal dose distributions for patient 1 for the a) manual plan and b) autoplan. The prescription for this patient was 2 Gy in one fraction where lungs, kidneys, bowel, gonads, brain, and lenses were selected for sparing.

Stanford University School of Medicine

Simiele, et al, (PRO 2021)

Results

- 20 plans for 10 patients were reviewed by 3 physicians
- Overall, the autoplans were marked as equivalent or superior to the manual plans 77% of the time

Plan preparation

- Plan preparation module of autoplanning script:
 - Separates plans into separate isocenters
 - Removes optimization structures
 - Generates shift note
- Another script Automated Plan Checker – automates the physics plan check by inspecting >150 plan elements and outputs the DVH constraints metrics

Stanford University School of Medicine

	Couch Vert	Couch Long	Couch Lat					
Chest final (CBCT)	-14.5	97.7	0.0	_				
					Long Shif	t from SUP to INF	Long Shift from CT ref (e	
Plan	 Couch Vert 	Couch Long	Couch Lat		Shift, cm	 direction 	 Shift, cm 	٠
Head	-14.5	62.7	0.0	shift from CT ref to Head	47	SUP	47	
Chest	-14.5	97.7	0.0	shift from Head to Chest	35	INF	12	
Pelvis	-14.5	133.7	0.0	shift from Chest to Pelvis	36	INF	-24	
	Flip the patient, remer	mber to change Couch LA	T to opposite sign			Flip the patient		
Upper Legs	-14.5	133.7	0.0	stay at same CouchLong as Pelvis	0		62	
Lower Legs	-14.5	95.7	0.0	shift from Upper Legs to Lower Legs	38.0	INF	100	

Bars out
VMAT TBI setup per procedure. Please ensure the matchline on Spinning Manny and the bag matches
TT=-14.5 for all plans
Dosimetric shifts SUP to INF:
Head iso shift from CTef 47 cm SUP
Chest iso shift from Head iso 35 cm INF (12 cm SUP from CT ref)
Pelvis iso shift from Chest iso 36 cm INF (24 cm INF from CT ref)
Rotate Spinning Manny, shift to opposite Couch Lat
Upper Leg iso - same Couch Ling as Pelvis iso
Lower Leg iso shift from Upper Leg iso 38 cm INF (100 cm INF from CT ref)

Conclusions

- VMAT TBI is a modern alternative to conventional 2D TBI treatment
- It offers:
 - possibility of organ sparing (lungs, kidneys, gonads, brain, thyroid, lenses) and SIB boosts
 - accurate dose calculation and image-guided delivery
 - more comfortable patient positioning
 - ability to treat TBI patient is small size vaults
- VMAT auto-planning script is loved in the clinic. It reduces treatment planning time to a few hours instead of days
- Stanford treated 25 patients with VMAT TBI since it's initiation in October 2019

Acknowledgements

- Physicians:
 - Susan Hiniker, MD
 - Richard Hoppe, MD
 - Erik Blomain, MD

Physicists:

- Eric Simiele, PhD
- Lawrie Skinner, PhD
- Xuejun Gu, PhD

Dosimetrists:

- Nic Ngo, BS
- Jonathan Lewis, CMD
- Nicole Howell, CMD

Stanford University School of Medicine

- Engineer:
 - Manny Villegas
- All Stanford RTTs

Eric Simiele

Nic Ngo

Susan Hiniker

Erik Blomain