Proton Monte Carlo Platforms Treatment Planning and Latest Developments

MGH

1811

Jan Schuemann

Associate Professor Associate Director of Physics Research Head of the Multi-Scale Monte Carlo Modeling Lab Massachusetts General Hospital & Harvard Medical School

AAPM, July 2021

MASSACHUSETTS GENERAL HOSPITAL

Conflicts of Interest

Funding from:

- NCI / NIH
- Damon Runyon Foundation
- Brain Tumour Charity

Analytical Pencil Beam Algorithms:

- For treatment planning and most clinical dose calculations
- Analytical calculations (approximations) \bullet
- Fast

Why do we need Monte Carlo ?

- Monte Carlo dose calculation serves as a benchmark for analytical dose calculation, in particular in complex geometries
- Monte Carlo can be used to calculate quantities in addition to dose • (fluence, LET, ...) for research, development and clinical applications
- **Differences** between Monte Carlo and analytical algorithms **more** • clinically significant in proton therapy compared to photon therapy due to higher dose gradients and the end of range of proton beams

Source of range uncertainty in the patient

Independent of dose calculation:

Measurement uncertainty in water for commissioning Compensator design Beam reproducibility Patient setup **Dose calculation:** Biology (always positive) CT imaging and calibration CT conversion to tissue (excluding I-values) CT grid size Mean excitation energies (I-values) in tissue Range degradation; complex inhomogeneities Range degradation; local lateral inhomogeneities *

Total (excluding *) Total

H. Paganetti: Range uncertainties in proton beam therapy and the impact of Monte Carlo simulations Phys. Med. Biol. 57: R99-R117 (2012)

Range uncertainty

With Monte Carlo

- $\pm 0.3 \text{ mm}$ $\pm 0.2 \text{ mm}$
- $\pm 0.2 \text{ mm}$
- $\pm 0.7 \text{ mm}$

Phys. Med. Biol. 57: R99-R117 (2012)

Effects of Margins

MASSACHUSETTS GENERAL HOSPITAL

RADIATION ONCOLOGY

MEDICAL SCHOOL

- \star reduction of margins to 2.4% + 1.2 mm
- \star large effect on critical structures

Understanding uncertainties in treatment planning

- \star MC considered to be gold standard of radiation transport calculations
- ★ Compare MC to treatment planning systems (TPS) based on analytical dose calculations (ADC)
- ★ Various studies comparing TPS to MC
- ★ Study effects of high density interfaces parallel to beam on analytical calculations

Range difference MC-ADC

J. Schuemann et. al, PMB. 2014, IJROBP 2015

Comparing ADC and MC - DVH parameters

★ DVH comparison:

- ★ Multi-beam treatment fields
- ★ all differences between MC and ADC < 5%</p>
- ★ largest variance for heterogeneous patient geometries
- ★ general underdosage (small fields + scattering effects)

% Difference per treatment site (MC-ADC)

Schuemann et al, Red Journal (2015)

Many in house developments

TOPAS: Tool for Particle Simulations

TOPAS: Wraps the general purpose Geant4 Monte Carlo system for Particle Therapy

Clinical Routine Monte Carlo

Script actions:

- creates input files
 - scattering: range comp, aperture, beam current modulation
 - scanning: phase space input
- creates patient geometry from CT files
- includes absolute dose normalization
- submits simultaneous jobs to a cluster

after the runs are finished:

- adds all fields
- outputs dose suitable for in-house and DICOM-compatible software
- reports dose-to-tissue / dose-to-water
- dose on planning grid and CT grid

full patient simulation: ~ 5 hrs on cluster **Total CPU time per field ~200 hours**

J. Verburg, C. Grassberger, et al. Technol. Cancer Res. Treat., 2016

Proton XiO: passive Scattering

ASTROID: scanning, inhouse

TOPAS script

DCA: Dose Comparison Application, inhouse

CERR: MATLAB-based, modified inhouse

DICOM

Challenges

★ Fast turnaround needed

★ Speed vs. accuracy

★ What is required? ★ How accurate? ★ How fast?

GPU Monte Carlo

★ GPUs offer faster MC simulations

- ★ Specialized applications
- ★ Some approximations

★ No neutral particle transport

 \bigstar Local deposition of electrons

★ Achieve few seconds dose calculations - similar to analytical codes!

Xun et al., PMB 2012

Tseung et al., Med. Phys 2015

Important to validate / commission each MC

- ★ MC does not mean everything is automatically correct
- ★ Perform MC commissioning just like any other TPS
- ★ New TG 349:
 Commissioning of
 MC dose
 calculations in
 Proton Therapy

M. Testa et. al,

HARVARD MEDICAL SCHOOL

natically correct ny other TPS

MC in commercial TPS

MC in TPS - pMC

- ★ First clinical release of pMC in 2016
- ★ Final dose calculations and optimization dose computation \star Migrated to the GPU in 2020, typical computation times of <5 seconds

★ No more need for analytical dose calculations ★ Features:

- ★ Transport of secondary p, D, and He
- ★ Secondary electrons and neutral particles are not transported
- \star CT calibration (HU to mass density or HU to RSP)
- ★ Single and double Gaussian in-air spot phase space supported
- * Beam modeling explicitly considers the size of the Bragg peak chamber used to record the IDDs
- \star Includes Beam limiting devices (range shifters and patient specific apertures)

Information courtesy of Martin Janson (RaySearch)

MC in TPS - GPUMCD

- ★ Monaco 6.0 with GPUMCD is FDA approved
- ★ Handles photons, electrons, protons, magnetic fields
- \star Calculation time per field < 5 seconds

★ Features

- ★ Class II condensed history approach
- \star Includes: Ionizations, energy straggling, multiple-scattering, nuclear interactions
- \star Transport of delta electrons (optional)
- ★ Stopping criteria (per spot)
- ★ Spatial and angular distribution according to Fermi-Eyges theory
- \star Dose to water or dose to tissue
- \star Includes Beam limiting devices (ridge filter and patient specific apertures, not yet clinical), couch

MC in TPS - pMC

- ★ In clinical operation at 50+ proton centers worldwide
- \star Clinical Proton MC is now standard for proton TPS.
- - ★ Computation of LET for evaluation and optimization
 - ★ Support for more beam configurations (DS, ions, wobbling, etc.)

RaySearch Laboratories

Information courtesy of Martin Janson (RaySearch)

Martin Soukup (Elekta)

\star Future features that are currently developed for clinical use include:

Including Biology: Relative Biological Effect - RBE

Including Biology - RBE dependencies

- \star Protons assumed 10% more effective than photons: Clinically used RBE = 1.1, constant!
- \star RBE depends on many factors: tissue, radiation quality, dose, endpoint, fractionation, ...
- Examples of RBE dependence: \star
 - the modeling approach \star
 - α/β ratio \star
 - Linear Energy Transfer (LET) \star

Why do we like LET?

It is factor we can influence **Independent of the model**

Dose x 1.1 Dose x RBE(α/β)

The effect of LET for biological optimization

Dose

Dose

% of prescribed dose

DET

3D

Grassberger et al

Int J Rad Biol Onc Phys

2011, 80:1559-1566

MEDICAL SCHOOL

Summary

\star Clinical Proton MC is now standard for proton TPS.

\star Comparable speed to analytical codes (GPU)

★ Comparable accuracy to full MC systems

\star Future of clinical MC: ★ More options, speed, devices \star Including LET, biology, ...

Thank you

HARVARD MEDICAL SCHOOL