Treatment Planning and Delivery for Proton Thoracic Therapy An European Center's Experience

Stefan Both

Professor&Head of Medical Physics Department of Radiation Oncology

University Medical Center Groningen

Disclo	sures
--------	-------

	COI status	Names of companies / organizations
$\widehat{1}$ Post of executive / consultant	No	
2) Stocks	No	
③ Patent royalties	No	
Stage moneys	No	
5 Manuscript fees	No	
6 Grant / Research funding	YES	Department of Radiation Oncology has research collaborations with Elekta, IBA, RaySearch, Siemens and Mirada Dutch Cancer Society Project 11518
 Other rewards 	No	

Outline

- Introduction
- Motion assessment
- Robust planning
- Robustness evaluation
- Retrospective 4D dose reconstruction
- Future Developments

IMPT Thoracic indications@UMCG

- Lung
- Lymphoma
- Esophagus
- Breast

vd Laan, HP et al. (2019) Acta Oncol. Organ sparing potential and inter-fraction robustness of adaptive intensity modulated proton therapy for lung cancer

Patient qualifies for protons?

6

Langendijk, JA et al (2013) Radiother Oncol Selection of Patients for Radiotherapy With Protons Aiming at Reduction of Side Effects: The Model-Based Approach

Outline

- Introduction
- Motion assessment
- Robust planning
- Robustness evaluation
- Retrospective 4D dose reconstruction
- Future Developments

Motion induced dose variations Interplay effect

• Dynamic treatment

'interplay' dynamic beam & patient geometry

Static target Dynamic treatment

Dynamic target Dynamic treatment

Target Motion Evaluation: 4DCT

Coregistered INHALE+EXHALE

Exhale Def. Field Vector , target

Clinical Pt NSCLC 05 <u>DIR</u>

- Max inhale vs. max exhale
- Superimposed on max exhale

Outline

- Introduction
- Motion assessment
- Robust planning
- Robustness evaluation
- Retrospective 4D dose reconstruction
- Future Developments

Robust planning

AveCT robust clinical plan recalculated on the 4DCT to check robustness

95% isodose

Inoue T et al. 2016 *Limited Impact of Setup and Range Uncertainties, Breathing Motion & Interplay ...* IJROB

Robust planning

- LUNG : 25 x 2.4 Gy(RBE)
- 3 beams
- Monte Carlo(Raysearch)
- Planning on ITV & average of 4DCT
- Density override ITV(muscle density)
- Robustness Settings(setup/range)

The range uncertainty is modeled by scaling the mass density of the patient. The range uncertainty is universal for all beams.

Relative residual range errors

A Meijers et al: Assessment of range uncertainty in lung-like tissue using a porcine lung phantom and proton radiography, PMB, Vol.65, 2020

(1.5SD 2.3%)

Mean rel. range error 1.0 %

(1.5SD 2.2%)

A Meijers et al: Assessment of range uncertainty in lung-like tissue using a porcine lung phantom and proton radiography, PMB, Vol.65, 2020

Robust planning

• Repainting of Pencil Beam spots Energy Layer wise

BEV

1 in layer rescanning

5 in layer rescanning

• Optional: enlargement of the spot size

Spot size&Interplay

• Small spots: $\sigma \sim 5 \text{ mm vs.}$ Big spots: $\sigma \sim 10 \text{ mm}$

Bigger spots can correct for Interplay.

Zeng C et al.: Proton pencil beam scanning for mediastinal lymphoma: the impact of interplay between target motion and beam scanning, PMB60(2015)

3D vs. 4D Robust planning optimization

Preclinical study

Target coverage

*Comprehensive 4D Robustness evaluation

+ Setup errors

- + Proton range uncertainty
- + Breathing motion
- + Interplay effect
- + Beam delivery accuracy
- + Fractionation
- + Anatomical variations

4D rCT

*Ribeiro, CO et al. (2019) Radiother Oncol Comprehensive 4D Robustness Evaluation .. Ribeiro, CO et al. (2019) IJROBP Towards the Clinical Implementation of Pencil Beam Scanned Proton ..

Outline

- Introduction
- Motion assessment
- Robust planning
- Robustness evaluation
- Retrospective 4D dose reconstruction
- Future Developments

Pre-treatment robustness evaluation

Setup errors Proton range uncertainty Planning CT

Edit scenari	io group						
Name:	A1PLongRe						
Patient posi	ition uncertainty						
🗹 Us	e isotropic uncertainty		×	Patient shifts [cm]:			
	Cuparias [am]		. 1 .	R-L		P-A	
	superior [cm]			0.60	0.00	0.00	
	0.60			-0.60	0.00	0.00	
Rig	ght [cm]	Posterior [cm]		0.00	0.00	0.60	
	0.60 📉 🧑 >			0.00	0.00	-0.60	
				0.00	0.60	0.00	
				0.00	-0.60	0.00	
	· · · · · · · · · · · · · · · · · · ·	+ •		0.35	0.35	0.35	
				0.35	0.35	-0.35	
Anter	ior [cm]	Left [cm]		-0.35	0.35	0.35	
				-0.35	0.35	-0.35	
	Inferior [cm]			-0.35	-0.35	-0.35	
				0.35	-0.35	-0.35	
				0.35	-0.35	0.35	
				-0.35	-0.35	0.35	
Density und	ertainty						
Densit	ty uncertainty [%]:	3.00		Density shift	s [%]:		
Numb	er of discretization points:	2		-3.00 3.0	00		
Total r	number of scenarios:	28		🗹 Compute	e scenario do	ises 🙀 📄	
Total r	number of dose computations:					<u>≪</u> ⊞	
					ОК	Canc	el

Pre-treatment robustness evaluation 6mm/3%

Clinical Pt NSCLC 05

95% isodose

*Korevaar, EW et al. (2019) Radiother Oncol Practical robustness evaluation in radiotherapy ..

20

Pre-treatment robustness evaluation

Patient position errors0.6 cmProton range uncertainty3%

*Korevaar, EW et al. (2019) Radiother Oncol Practical robustness evaluation in radiotherapy ..

On treatment robustness evaluation on AVECT with Voxmin and Voxmax eval(3%/2mm)

Clinical Pt NSCLC 5 Voxel-wise min

95% isodose

Goal: D98 > 95%

Outline

- Introduction
- Motion assessment
- Robust planning
- Robustness evaluation
- Retrospective 4D dose reconstruction
- Future Developments

Daily 4D dose reconstruction

Meijers A et al., Log file-based dose reconstruction and accumulation for 4D adaptive pencil beam scanned proton therapy in a clinical treatment planning system: Implementation and proof-of-concept. Med Phys. 2019 Mar;46(3):1140-1149

Meijers, A et al. Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation", Radiotherapy and Oncology 150 (2020) 268-274

On treatment robust evaluation

Clinical Control Infrastructure

The platform architecture: core units (in grey) and external components (in white).

G. Guterres Marmitt et al: Platform for automatic patient quality assurance via Monte Carlo simulations in proton therapy; PM, Vol.70 2020

Characteristics of treatmeant course preparation 10 consecutive patients treated with IMPT@UMCG

Pat. #	Indication	Prescription	ITV volume, cm ³	Mean motion, mm	Point-max motion mm	ITV V95 _{vox-min} , %
01	Lymphoma	15 × 2.0 Gy _{RBE}	166	0.9	<5	98.13
02	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	44	2.2	<6	99.42
03	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	243	0.9	<6	99.77
04	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	131	0.7	<5	99.82
05	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	357	0.7	<7	99.06
06	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	217	1.1	<5	99.74
07	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	298	1.2	<9	98.41
08	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	202	1.4	<8	98.41
09	NSCLC	$25 \times 2.4 \text{ Gy}_{\text{RBE}}$	336	0.6	<6	99.49
10	Lymphoma	15 × 2.0 Gy _{RBE}	339	2.1	<20	99.67

A. Meijers, et al. Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation", Radiotherapy and Oncology 150 (2020) 268-274

Daily 4D Dose reconstruction

A. Meijers, et al. Evaluation of interplay and organ motion effects by means of 4D dose reconstruction and accumulation", Radiotherapy and Oncology 150 (2020) 268-274

Lung Big Movers Study

- Thoracic indications
 - 9 lung + 1 thymoma cancer
 - Large CTV motion amplitudes (> 10 mm)
 - IMPT_3D plans
 - Clinically approved
 - > 4DREM
 - Machine log files
 - Patient weekly repeated 4DCTs
 - End-exhale planning CT phase

C.O. Ribeiro :Patient and machine specific evaluation of intensity-modulated proton therapy (IMPT) for thoracic indications with large motion. PTCOG 2021

Big Movers Study

4DREM (with dose-fraction-smoothening effect)

Ribeiro, et al., "Comprehensive 4D robustness evaluation for pencil beam scanned proton plans", 2019.

Results – Target coverage

Lung cancer patient 5

OARs (lungs and heart)

Outline

- Introduction
- Motion assessment
- Robust planning
- Robustness evaluation
- Retrospective 4D dose reconstruction
- Future Developments

Automatize treatment planning and QA processes on our clinical control platform for daily treatment monitoring and model based adaptive proton therapy workflows based on :

- Quality of Life based robust optimized planning
- daily 3D /4D synthetic CT generated from 3D /4D CBCT
- patient treatment log File / machine File
- "end to end " treatment verification such as proton radiography measurements

CBCT

sCToria

sCTcor

Thummerer A.: Neural Network Based Synthetic CTs for Adaptive Proton Therapy of Lung Cancer, Oral Presentation, ESTRO 2021

Conclusions:

- Rescanned delivered 3D robustly optimized and evaluated IMPT based on 4DCT can treat moving targets in free breathing for an increasing range of motion.
- Use of enlarged spots further robustify IMPT.
- Treatment adaptations are mostly due to anatomical changes.
- 4D dose reconstructions are a good predictor for plan robustness assessing the delivered dose considering patient anatomy and breathing pattern changes as the treatment progresses.

Acknowledgements

Medical doctors : Langendijk JA. Wijsman R. Niezink, A.

Medical physicists : Meijers A. Korevaar E. Knopf AC Oraboni Ribeiro C. Gutterres Marmitt G.

www.umcg.nl Thank you.

2021 AAPM Annual Meeting, July 25-29

University Medical Center Groningen