

Katia Parodi, Ph.D. Ludwig-Maximilians-Universität München (LMU Munich) Department of Medical Physics, Munich, Germany

2021 AAPM Annual Meeting

Energy loss with electrons (S_{el} = dE/dx $\propto Z^2/v^2$) is related to **unrestricted Linear Energy Transfer (LET)**

LET is only defined for monoenergetic beams

In a realistic field LET typically refers to the doseaveraged value over the *i*-th particle energy spectrum

$$\text{LET}_{d}(z) = \frac{\sum_{i} \int_{0}^{\infty} S_{el}^{i}(E) D^{i}(E, z) dE}{\sum_{i} \int_{0}^{\infty} D^{i}(E, z) dE}$$

Karger and Scholz, PMB 01TR02 (2018)

High LET radiation is more efficient in cell killing

Increased effectiveness expressed in terms of *R*elative *B*iological *E*ffectiveness

Pronounced increase at low energies, while small effect at high energies

M. Scholz, GSI, Darmstadt

The motivation for carbon ions

G. Kraft, Progress in Particle and Nuclear Physics 45 (2000) S473-S544

M Krämer & M. Scholz, GSi

Oxygen Enhancement Ratio (OER)

Tumour tissue can be scarsely vascularised

- Less oxygen content (chronic/acute hipoxia) •

Oxygen Enhancement Ratio

Biological modeling for treatment planning

How to account for biological effects in particle therapy?

Modelling of RBE variations

Empirical LET-based RBE models (esp. protons)

- Wilkens and Oelfke (2004)
- Carabe et al. (2012)
- Wedenberg et al. (2013)
- McNamara et al. (2015)

Mechanistic RBE models

- Local effect model (LEMI-LEMIV)
- Microdosimetric kinetic model (MKM)
- Repair-misrepair-fixation model (RMF)

Other physical surrogates such as $\mathsf{LET}_{\mathsf{d}}$ (may provide a reasonable approximation for protons)

Courtesy of C. Karger and D. Carlson

- Known RBE variations with LET
- Uncertainties of different models

Paganetti et al., Int.J.Radiat.Oncol.Biol.Phys. 2002

Biological modeling for treatment planning - carbon ions

- Variable RBE scheme (accounting for mixed radiation field)
- Different models used in the clinics (LEM, MKM) based on different underlying assuptions connecting survival S to average number of lethal lesions $\overline{N(D)} = -\ln S(D)$

LEM combines track structure model of radial dose d, cell nucleus size / volume V and photon survival curves S:

$$\overline{N(D)} = \int \frac{-\ln S(d(x, y, z))}{V} dV$$

Initial slope of S(D) curve for LET $\rightarrow 0$

MKM links S(D) for macroscopic ion dose D to specific energy absorbed by a microscopic subnuclear structure 'domain':

Indep. of radiation quality $\overline{N(D)} = -\ln S = (\alpha_0 + \beta \overline{z_{1D}^*})D + \beta D$

Radial Do

10

Karger and Scholz, PMB 01TR02 (2018); Scholz et al Radiat. Environ. Biophys. 36 (1997); Inaniwa et al, PMB 55 (2010)

Biological modeling for treatment planning – carbon ions

Original Article

ancers cancers

- Uncertainties of model predictions
- Unclear correlation to outcome
- Importance of establishing relationship between model-dependent prescriptions

Stewart...Scholz, MedPhys 2017, Special issue PT

rectal complications in carbon-ion radiotherapy
Noriyuki Okonogi**, Shinnosuke Matsumoto^b, Mai Fukahori^{*}, Wataru Furuichi^d, Taku Inaniwa^b,
Naruhiro Matsufuji^b, Reiko Imai^a, Shigeru Yamada^a, Nobuyuki Kanematsu^b, Hiroshi Tsuji^a
Conclusion: We demonstrated that severe rectat loxicities were related to the <u>decision</u> of the clinical
dose in C-ion RT. However, no correlations were found between severe rectat loxicities and LEId alone
or physical dose *per se*.
REctum Dose Constraints for Carbon Ion Therapy:
Relative Biological Effectiveness Model Dependence
in Relation to Clinical Outcomes

MOPI

Radiotherapy and Oncology

journal homepage: www.thegreenjournal.com

Radiotherapy and Oncology 153 (2020) 272–278

Dose-averaged linear energy transfer per se does not correlate with late

Cancers 2020, 12, 46; doi:10.3390/cancers12010046

New horizons in radiobiology

Higher complexity beyond physico-chemical processes ...

distribution properties that can be utilized for superior tumor targeting in the Photon clinic

>The DNA damage induced by low LET protons and photons should be essentially equivalent, given their similar track structures at the nm scale.

>The RBE of protons obtained from standard endpoints of cell killing is close to unity (1.1-1.2) and can be applied to more complex endpoints.

those of photons, including inhibition of

death

New Paradigm: High energy protons and photons have distinct physical and biological properties.

Girdhani et al., Radiat. Res. 2013

New horizons in small animal research

Bridging the gap: small animal radiotherapy research

Emerging irradiation platforms for protons and heavier ions

Acknowledgement

Many thanks to:

C. Orton & C. Borrás for organizing this session M. Durante (GSI) & D. Carlson (UPENN) for material

Further reading:

Medical Physics Special Issue "Current Challenges and Prospects in Particle Therapy" (edited by J. Farr & K. Parodi, 2018)

Thank you for your attention

