MRI Applications in Spine

Trevor Andrews, PhD, DABMP(MRI), MRSE(MRSC[™]) trevor.andrews@wustl.edu July 27, 2021

Washington University in St. Louis

School of Medicine

Who is this for?

I assume that you know the basics of MRI physics, but <u>do not know much about MRI clinical applications</u>.

Caveat:

This is mostly generic advice.

Consult vendor Apps for vendor-specific options.

Learning Objectives

1. To be able to list and discuss basic features of <u>several common</u> <u>indications</u> for spine MRI;

2. To be able to list and discuss the most <u>common clinical MRI</u> <u>techniques</u> used for the spine;

3. To be able to list and discuss the key <u>image quality and MR safety</u> <u>issues</u> for MRI of the spine

References

 Good place to get started with MRI clinical applications basics: https://www.acr.org/Clinical-Resources/Practice-Parameters-and-Technical-Standards/Practice-Parameters-by-Modality

Enter your search						٩							
Clinical Resources	Advocacy and Economics	Lifelong Learning and CME	Member Resources	Practice Management, Quality, Informatics	Research	Log In							
General						Ť							
Magnetic Resc	onance Imaging					^							
ACR-ASNR-SPR Prac	tice Parameter for the Per	formance of Magnetic Resona	nce Imaging (MRI) of th	e Pediatric Spine Res. 5 - 201	9								
ACR Practice Parameter for Performing and Interpreting Magnetic Resonance Imaging (MRI) Res. 10 – 2017													
ACR-SAR-SPR Practice Parameter for the Performance of Magnetic Resonance (MR) Enterography Res. 9 – 2015													
ACR-SPR Practice Parameter for the Safe and Optimal Performance of Fetal Magnetic Resonance Imaging (MRI) Res. 11 - 2015													
ACR-NASCI-SPR Pra	ctice Parameter for the Pe	rformance and Interpretation	of Cardiac Magnetic Re	sonance Imaging (MRI) Res. 5	- 2016								
ACR-SAR-SPR Practice Parameter for the Performance of Magnetic Resonance Imaging (MRI) of the Abdomen (Excluding the Liver) Res. 2 - 2015													
ACR-SAR-SPR Practi	ice Parameter for the Perfo	ormance of Magnetic Resonance	ce Imaging (MRI) of the	Liver Res. 3 - 2015									
ACR-SAR-SPR Practi	ice Parameter for the Perfo	ormance of Magnetic Resonance	ce Imaging (MRI) of the	Soft-Tissue Components of th	ne Pelvis Res. 4	- 2015							
ACR-ASNR-SPR Prac	tice Parameter for the Per	formance and Interpretation o	of Magnetic Resonance	Imaging (MRI) of the Brain Re	s. 17 – 2019								
ACR-ASNR-SPR Prac	tice Parameter for the Per	formance of Functional Magne	etic Resonance Imagin	g (fMRI) of the Brain Res. 20 – 2	2017								
ACR-ASNR-SPR Prac	tice Parameter for the Per	formance of Intracranial Magn	etic Resonance Perfus	ion Imaging Res. 19 - 2017									
ACR-ASNR-SPR Prac	tice Parameter for the Per	formance of Magnetic Resona	nce Imaging (MRI) of th	e Head and Neck Res. 16 – 20	18								
ACR-ASNR-SCBT-M	R-SSR Practice Parameter	for the Performance of Magnet	tic Resonance Imaging	(MRI) of the Adult Spine Res.	19 - 2018								
ACR-ASNR-SPR Prac - 2019	tice Parameter for the Per	formance and Interpretation o	of Magnetic Resonance	Spectroscopy of the Central N	lervous Systen	n Res. 16							
ACR-SPR-SSR Practi 2015	ice Parameter for the Perfo	ormance and Interpretation of	Magnetic Resonance I	naging (MRI) of Bone and Soft	Tissue Tumor	s Res. 5 -							
ACR-SPR-SSR Practi Infections in the Extr	ce Parameter for the Perfo remities Res. 4 - 2016	ormance and Interpretation of	Magnetic Resonance II	naging (MRI) of Bone, Joint, a	nd Soft Tissue								
ACR-SPR-SSR Practi	ice Parameter for the Perfo	ormance and Interpretation of	Magnetic Resonance I	naging (MRI) of the Shoulder I	Res. 7 - 2015								
ACR-SPR-SSR Practi	ice Parameter for the Perfo	ormance and Interpretation of	Magnetic Resonance I	naging (MRI) of the Elbow Res	. 6 - 2016								

The American College of Radiology, with more than 30,000 members, is the principal organization of radiologists, radiation oncologists, and clinical medical physicists in the United States. The College is a nonprofit professional society whose primary purposes are to advance the science of radiology, improve radiologic services to the patient, study the socioeconomic aspects of the practice of radiology, and encourage continuing education for radiologists, radiation oncologists, medical physicists, and persons practicing in allied professional fields. The American College of Radiology will periodically define new practice parameters and technical standards for radiologic practice to help advance the science of radiology and to improve the quality of service to patients throughout the United States. Existing practice parameters and technical standards will be reviewed for revision or renewal, as appropriate, on their fifth anniversary or sooner, if indicated. Each practice parameter and technical standard, representing a policy statement by the College, has undergone a thorough consensus process in which it has

Each practice parameter and recursion summary, representing a poincy statement of the Confege, nas unanegoute a morougn consensus process in which it has been subjected to extensive review and approval. The practice parameters and technical standards recognize that the safe and effective use of diagnostic and therapeutic radiology requires specific training, skills, and techniques, as described in each document. Reproduction or modification of the published practice parameter and technical standard by those entities not providing these services is not authorized.

Revised 2018 (Resolution 19)*

ACR-ASNR-SCBT-MR-SSR PRACTICE PARAMETER FOR THE PERFORMANCE OF MAGNETIC RESONANCE IMAGING (MRI) OF THE ADULT SPINE

PREAMBLE

This document is an educational tool designed to assist practitioners in providing appropriate radiologic care for patients. Practice Parameters and Technical Standards are not inflexible rules or requirements of practice and are not intended, nor should they be used, to establish a legal standard of care¹. For these reasons and those set forth below, the American College of Radiology and our collaborating medical specialty societies caution against the use of these documents in litigation in which the clinical decisions of a practitioner are called into question.

Spine Anatomy

Typical # of vertebrae

- Cervical (C-spine):
- Thoracic (T-spine): 12
- Lumbar (L-spine): 5
- Spinal cord at C-spine & T-spine
- Below the conus are nerve roots, the Cauda Equina (*latin* for "horse's tail")

Figure courtesy cancer.gov.

Indications for Spine MRI

MRI is the only modality for evaluation of internal structure of the cord*

- Congenital spine and spinal cord malformations
- Inflammatory/autoimmune disorders (e.g. MS, lupus, muscular dystrophies)
- Infectious conditions
- Vascular disorders (vascular malformations, cord infarctions)
- Degenerative conditions (disc degeneration, disc herniation, spinal stenosis)
- Trauma
- Neoplastic abnormalities
- Miscellaneous (CSF leak, amyloid deposition)

Spine Coils

• CTL (older)

Cervical

• Thoracic and Lumbar

Spine Coils Within the Bed

Newer spine coils for thoracic and lumbar, are embedded within the bed:

This removes need for swapping coils but may increase distance to patient (thus decreasing SNR).

Spine Coil Elements and Parallel Imaging

Note: # of coil elements in R/L and F/H direction:

- Establishes limits on parallel imaging acceleration factors (i.e. SENSE/iPAT)
- No SENSE/iPAT acceleration in <u>A/P direction</u>

Other Acceleration Methods

Other caveats:

- Simultaneous Multi-Slice (SMS)
 - Best used for axial stacks with a lot of slices
- Compressed Sensing
 - Vendor may have pulse sequence limitation (e.g. only 3D TSE)

Pulse Sequences for MRI

- Mainly turbo spin echo (TSE) scans
 - AKA fast spin echo
 - Relatively fast and resistant to susceptibility artifacts, BUT
 - Higher SAR (and patient heating, esp. for T1W)

MRI Sequences (at WashU)

CERVICAL SPINE

- Scout (TSE)
 - Sag T1 TSE
 - Sag T2 TSE

PRE

POST

Sag T2 TSE FS – (possibly STIR)

- for marrow replacement processes (mets), facet inflammation, cord signal abnormalities
- Ax T2 MEDIC (near metal: TSE)
 - CONTRAST injection for myelopathic symtoms or Hx of malignancy
- SAG T1 TSE DIXON
- AX T1 VIBE FS

MRI Sequences (at WashU)

THORACIC and LUMBAR SPINE

- Scout (TSE)
 - Sag T1 TSE
 - Sag T2 TSE

PRE

POST

Sag T2 TSE FS – (possibly STIR)

- for marrow replacement processes (mets), facet inflammation, cord signal abnormalities
- Ax T2 TSE

CONTRAST injection - for myelopathic symtoms or Hx of malignancy

- SAG T1 TSE DIXON
- AX T1 VIBE FS

Scan Planning for Spine MRI

- Sagittal Coverage
 - Scoliosis may require more slices and increased scan duration
- Axial Orientation
 - Cord pathology: axials perpendicular to cord
 - Disc pathology: axials parallel to each disc

So, <u>multiple stacks may be needed</u>.

- Single-Stack (e.g. tumor) vs. Multi-Stack (e.g. disc disease, curved spine)
- Selective axials to save time

MERGE / MEDIC / mFFE

- Axial 2D multi-echo gradient echo
- Used for cord pathology in C-spine
- Healthy cord has "butterfly" appearance; great contrast
- Later echoes may be degraded by motion, susceptibility, or low SNR
 - Consider dropping them from the echo averaging

3-5 echoes are used We use 3 at WashU.

Spine Diffusion

- Traditional DW-EPI will produce "sawtooth" geometric distortion
- Read-out segmented EPI (RESOLVE) can reduce this:

• For spine DTI:

• Noguerol, et al. "Optimizing DTI Acquisition for Spinal Cord Assessment", Radiographics 2020.

RF Shading Artifacts

- Common in torso/abdomen at 3T
- RF wavelength ~1/10 that in air
- Standing waves cause shading
- In spine: worst near T/L Junction
- Mitigation:
 - Avoid 3T
 - Use "multi-transmit RF shimming"

Motion Artifacts

- Motion artifacts due to cardiac motion, swallowing, respiration
- "Sat Bands"
 - Suppresses tissue signal anterior to vertebrae, BUT
 - Often not needed and adds significantly to SAR
- Consider other options
 - Motion resistant scans (e.g. Propeller)
 - Reduced echo spacing

Flow Artifacts

- CSF flow along spine
 - Younger patients have faster flow
 - T2W: flow voids
 - Use flow compensation
 - May need to specify direction (<u>slice or readout</u>)
 - Vendor-specific approaches
 - PSS (Pseudo-Steady State) scans reduce this
- Post-Gad
 - Consider 3D T1W (e.g. VIBE)

Metal Artifacts

Reduce metal artifacts by:

- Use large bandwidth
 - commonly >1000Hz/pixel
- Use strong imaging gradients
 - Some vendors lump this into a "MARS" mode
 - Otherwise try thin slices and large matrix w/ same FOV
- Use View Angle Tilting (VAT) w/ SEMAC or MAVRIC
- For Fat Sat: STIR (most robust, but only for pre-Gd) or Dixon

2.34 minutes

3.37 minutes

5.48 minutes

Courtesy: Hennepin County Medical Center

3D Turbo Spin Echo

- Good for disc pathology
- Poor cord contrast

Spinal Cord Stimulators

How the Implant Works

Stimulation therapy helps manage chronic pain by sending mild electrical impulses to the spine that distract the brain from recognizing pain signals.

100

1. A small external remote signals the pulse generator implanted in the lower back.

2. The pulse generator sends low currents of electricity through the extension wires into the leads tunneled into the spine.

3. The electrical current from the **leads** creates a tingling sensation that masks the pain signals as they travel to the brain.

Source: Mayfield Clinic The Wall Street Journal

- Scan requirements vary by vendor.
- Generally:
 - Put external remote in MR Safe Mode
 - Check scanning requirements including:
 - Static Magnetic Field
 - SAR or B1⁺_{rms}
- Example:
 - Abbott spinal cord stimulator w/ Penta leads:
 - 1.5T only
 - whole body SAR no more than 0.1 W/kg (!)

Low SAR Spine Protocols

• How to reduce SAR or B1+rms:

http://mriquestions.com/uploads/3/4/5/7/34572113/mri_guidance_-_sar___b1_rms_final_12.23.15.pdf

- Use low SAR pulses
- Reduce flip angle for refocusing pulses
- Get rid of sat bands
- Increase TR (but not too much for T1W scans)
- Increase # of concatenations (Siemens) or stacks (Philips)
- Abbott document has low SAR brain and spine (Siemens) protocols
 - Contact melissa.ham@abbott.com for a copy

Abbott Low SAR C-Spine

TABLE 3. COMPARISON OF SCAN PARAMETERS FOR CERVICAL SPINE PROTOCOLS (MALE, 72 KG/159 LB)

SCAN PARAMETERS	LOCALIZER T2 WEIGHTED TURBO SPIN ECHO (TSE) - SAGITTAL			T2 WEIGHTED SHORT TAU IN RECOVERY (ST	TSE WITH VERSION 'IR) - SAGITTAL	T2 WEIGHTED TRANSVERSE	TSE -	T2 MULTI ECHO 2-D TRANSVERSE	T1 WEIGHTED	ISE - SAGITTAL	T1 WEIGHTED DARK FLUID SAGITTAL	TSE WITH TECHNIQUE -	3-D T2 WEIGHTED CISS - TRANSVERSE		
	STANDARD PROTOCOL, WB-SAR ≤ 0.8 W/KG & WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL & WB-SAR ≤ 0.8 W/KG	WB-SAR ≤0.1 W/ KG	
$B_{_{1*}}$ RMS, µT	0.7	3.3	1.2	2.9	1.4	3.5	1.4	0.3	3.6	1.5	2.4	1.4	3.5	1.3	
Slabs	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	
Slices	7,3 in two slice groups	15	15	15	15	28	28	28	15	15	15	15	NA	NA	
Phase oversampling, %	50	65	65	80	80	65	70	25	80	80	80	80	50	50	
Slices per Slab	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	56	56	
FoV Read, mm	300	220	220	220	220	180	180	180	220	220	220	220	180	180	
FoV Phase, %	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Slice thickness, mm	8.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	2.0	2.0	
TR, ms	6.0	3800.0	6500.0	3800.0	3800.0	5000.0	6500.0	553.0	550.0	600.0	1900.0	2000.0	5.1	7.6	
TE, ms	2.38	84.0	83.0	32.0	32.0	82.0	80.0	24.0	9.4	11.0	9.5	11.0	2.24	3.49	
Number of Averages	1	2	1	2	1	2	1	2	3	1	1	1	1	1	
Concatenations	10	1	2	1	3	1	3	2	1	4	2	3	NA	NA	
TI, ms	NA	NA	NA	160	160	NA	NA	NA	NA	NA	860	900	NA	NA	
Flip angle, degree	20	150	120	150	150	150	150	28	150	135	150	135	63	55	
Base Resolution	256	384	384	256	256	256	256	256	384	384	256	256	256	256	
Phase Resolution, %	71	100	60	75	75	80	50	75	70	70	90	90	100	100	
Slice resolution, %	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	100	100	
PAT mode	None	GRAPPA	GRAPPA	GRAPPA	GRAPPA	None	None	GRAPPA	None	None	None	GRAPPA	None	None	
Acceleration factor PE	None	2	2	2	2	None	None	2	None	None	None	2	None	None	
Turbo factor	NA	18	14	9	9	13	8	NA	3	4	6	5	NA	NA	
RF pulse type	Fast	Normal	Low RF Power	Fast	Low RF Power	Normal	Low RF Power	Normal	Normal	Low RF Power	Normal	Low RF Power	Normal	Low RF Power	
Acquisition Time ⁵ ,	0:18	3:53	3:30	2:37	4:12	4:27	4:15	4:53	4:29	4:54	4:31	4:32	3:43	5:31	

§ - Acquisition time may vary based on scan parameters and factors not listed in this table.

Note: Estimation of scanner reported SAR values requires correct patient weight and scan parameters. The SAR values may vary from patient to patient and further modifications may be needed to limit SAR.

Abbott Low SAR T-Spine

TABLE 4. COMPARISON OF SCAN PARAMETERS FOR THORACIC SPINE PROTOCOLS (MALE, 70 KG/155 LB)

SCAN PARAMETERS	LOCALIZER	T2 WEIGHTE	D TSE - SAGITI	AL	T2 WEIGHTED TSE WITH STIR - SAGITTAL			T2 WEIGHTED TSE WITH DIXON - SAGITTAL			T1 WEIGHTED TSE - SAGITTAL			TI WEIGHTED TSE WITH DARK FLUID - SAGITTAL			T1 WEIGHTED TSE - TRANSVERSE			3-D T2 WEIGHTED CISS - TRANSVERSE		T2 MULTI ECHO 2-D TRANSVERSE	
	STANDARD PROTOCOL, WB-SAR ≤ 0.8 W/KG & WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤0.8 W/KG	WB-SAR ≤0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤0.8 W/KG	STANDARD PROTOCOL, WB-SAR ≤ 0.8 W/KG & WB-SAR ≤ 0.1 W/KG	
B_{μ} RMS, μ T	0.7	2.7	1.9	0.9	2.7	2.2	1.0	3.1	2.0	1.0	3.4	2.4	1.1	2.6	2.3	1.1	3.5	2.5	1.1	3.8	2.0	0.4	
Slabs	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	1	1	NA	
Slices	7,3 in two slice groups	15	15	15	15	15	7	15	15	7	15	15	7	15	15	7	25	25	12	NA	NA	25	
Phase oversampling, %	50	100	100	45	80	80	70	90	90	45	80	80	60	80	80	70	50	50	50	50	50	10	
Slice	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	28.6	28.6	NA	
oversampling, %					NIA	NIA	NIA	NIA	DT A	NIA	NIA	NIA	NIA	NTA	NIA	NIA	NIA	NIA	NIA	24	54	NIA	
Slices per slab	NA	NA	NA	NA	NA	INA 240	NA	NA	NA 240	NA	INA	NA	NA	NA	INA	INA 240	INA	100	INA	50	30	100	
Fov Read, mm	450	340	340	340	340	340	340	340	340	340	340	340	340	340	340	340	190	190	190	190	190	190	
Fov Phase, %	100	100	100	100	4.0	100	100	100	100	100	100	100	100	100	100	100	2.5	2.5	2.5	2.0	2.0	2.5	
mm	8.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	5.5	3.5	3.5	2.0	2.0	5.5	
TR, ms	6.0	4000.0	4000.0	4000.0	4000.0	4440.0	4200.0	4000.0	4000.0	4000.0	650.0	650.0	720.0	1900.0	1900.0	1900.0	550.0	550.0	550.0	5.4	7.54	400.0	
TE, ms	2.38	100.0	100.0	100.0	39.0	44.0	44.0	89.0	84.0	84.0	10.0	10.0	10.0	9.8	11.0	11.0	9.5	9.5	9.5	2.21	3.46	17.0	
Number of Averages	1	2	1	1	2	1	1	1	1	1	1	1	1	2	2	1	2	1	1	1	1	2	
Concatenations	10	1	1	5	1	1	2	1	1	2	1	2	5	2	2	5	2	4	9	NA	NA	2	
TI, ms	NA	NA	NA	NA	160	160	160	NA	NA	NA	NA	NA	NA	860	860	860	NA	NA	NA	NA	NA	NA	
Flip angle, degree	20	150	150	120	150	150	120	150	150	120	150	150	120	150	150	120	150	150	120	70	70	30	
Base Resolution	256	448	448	448	384	384	384	384	384	384	384	384	384	384	384	384	256	256	256	256	256	256	
Phase Resolution, %	70	80	80	65	70	70	70	75	75	70	75	75	65	75	75	68	75	75	75	100	100	70	
Slice Resolution, %	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	100	100	NA	
PAT mode	None	GRAPPA	GRAPPA	GRAPPA	GRAPPA	GRAPPA	GRAPPA	GRAPPA	GRAPPA	GRAPPA	None	None	GRAPPA	GRAPPA	GRAPPA	GRAPPA	None	None	GRAPPA	None	None	None	
Acceleration factor PE	None	2	2	2	2	2	2	2	2	2	None	None	2	2	2	2	None	None	2	None	None	None	
Turbo factor	NA	19	17	14	10	10	10	16	16	16	9	3	4	8	8	8	3	3	3	NA	NA	NA	
RF pulse type	Fast	Low RF Power	Low RF Power	Low RF Power	Normal	Low RF Power	Low RF Power	Normal	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Normal	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Normal	Low RF Power	Normal	
Acquire in two parts	Not needed	Not needed	Not needed	Not needed	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Not needed	
Acquisition Time ⁸ , mm:ss	0:18	2:38	1:34	5:42	3:26	2:01	3:40+	2:30	2:30	3:38+	3:47	3:48	3:16+	4:16	4:16	4:56+	3:34	3:35	4:24+	3:30	5:28	5:18	

10

§ - Acquisition time may vary based on scan parameters and factors not listed in this table.

† - For reducing WB-SAR or B, RMS in the case of RF intensive protocols, splitting the protocol in two parts may be needed (i.e., an MRI protocol with 15 slices can be split into two acquisitions of 7 and 8 slices each). Please note that the listed parameters are for 7 slices. Similar acquisition will be needed for the second part of the protocol. Note: Estimation of scanner reported SAR values requires correct patient weight and scan parameters. The SAR values may vary from patient to patient and further modifications may be needed to limit SAR values.

Abbott Low SAR L-Spine

TABLE 5. COMPARISON OF SCAN PARAMETERS FOR LUMBAR SPINE PROTOCOLS (MALE, 81 KG/179 LB)

	LOCALIZER	T2 WEIGHTE	D TSE - SAGI	ITAL	T2 WEIGHTED TSE WITH STIR - SAGITTAL			T2 WEIGHTED TSE - TRANSVERSE			T2 WEIGHTED ANGLE (MSM) TSE MULTISHO A) - TRANSVER	DT MULTI SE	T1 WEIGHTED	TSE - SAGITTA		T1 WEIGHTED TSE - TRANSVERSE			
PARAMETERS	PROTOCOL, WB-SAR≤0.8 W/KG & WB-SAR≤0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	STANDARD PROTOCOL	WB-SAR ≤ 0.8 W/KG	WB-SAR ≤ 0.1 W/KG	
B ₁ ,RMS, μT	0.7	2.8	2.0	0.9	2.9	2.4	1.0	3.5	2.0	0.9	2.9	2.0	1.0	3.0	2.2	0.9	3.0	2.5	1.1	
Slices	7,3 in two slice groups	15	15	15	15	15	8	20	20	10	6,6,6 in three slice groups	6,6,6 in three slice groups	3,3,3 in three slice groups	15	15	8	20	20	10	
Phase oversampling, %	50	80	80	50	80	80	80	40	40	40	20	20	20	80	80	60	30	30	30	
FoV Read, mm	450	260	260	260	260	260	260	220	220	220	200	200	200	260	260	260	220	220	220	
FoV Phase, %	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
Slice thickness, mm	8.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	
TR, ms	6.0	3500.0	3500.0	4000.0	3500.0	3500.0	3600.0	4000.0	4000.0	4000.0	4000.0	4000.0	4000.0	550.0	550.0	600.0	550.0	550.0	600.0	
TE, ms	2.38	91.0	91.0	91.0	41.0	43.0	43.0	89.0	89.0	89.0	92.0	92.0	92.0	9.6	9.6	9.6	10.0	10.0	10.0	
Number of Averages	1	2	1	1	2	2	1	2	1	1	3	2	1	3	2	1	2	1	1	
Concatenations	10	1	2	4	1	1	3	1	2	4	1	2	4	1	2	4	2	3	8	
TI, ms	NA	NA	NA	NA	170	170	170	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	
Flip angle, degree	20	150	150	120	150	150	120	150	150	120	150	150	120	150	150	120	150	120	120	
Base Resolution	256	384	384	384	256	256	256	384	384	384	320	320	320	320	320	320	256	256	256	
Phase Resolution, %	70	70	70	50	80	80	80	75	75	75	80	80	80	70	70	70	85	85	85	
PAT mode	None	None	None	GRAPPA	GRAPPA	GRAPPA	GRAPPA	None	None	GRAPPA	None	None	GRAPPA	None	None	None	None	None	GRAPPA	
Acceleration factor PE	None	None	None	2	2	2	2	None	None	2	None	None	2	None	None	None	None	None	2	
Turbo factor	NA	17	17	9	9	9	9	15	15	15	17	17	17	3	3	3	3	3	3	
RF pulse type	Fast	Low RF Power	Low RF Power	Low RF Power	Fast	Low RF Power	Low RF Power	Normal	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	Low RF Power	
Acquire in two parts	Not needed	Not needed	Not needed	Not needed	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	Not needed	Not needed	Yes [†]	
Acquisition Time ⁸ , mm:ss	0:18	3:28	3:32	5:06	2:32	2:32	4:10+	3:42	3:46	4:18+	3:54	5:14	2:58+	3:45	5:00	4:52+	3:32	2:40	4:11+	

§ - Acquisition time may vary based on scan parameters and factors not listed in this table.

† - For reducing WB-SAR in the case of RF intensive protocols, splitting the protocol in two parts may be needed (i.e., an MRI protocol with 16 slices can be split into two acquisitions of 8 slices each). Please note that the listed parameters are for 7 slices. Similar acquisition will be needed for the second part of the protocol. Note: Estimation of scanner reported SAR values requires correct patient weight and scan parameters. The SAR values may vary patient to patient and further modifications may be needed to reduce SAR.

Acknowledgements

Dave Hitt, RT Joyce Spilker, RT Allen Elster, MD

Thank You!

Multiple Stack Artifact

<u>Cause</u>: Slice overlap from different stacks

<u>How to avoid</u>: Scanning each stack sequentially rather than interleaved

