

Technical Specifications for mpMRI (PI-RADS v2.1)

Coils

- · Pelvic phased-array coils commonly used
- Endorectal Coil (ERC)
 - Increased SNR, advantageous for larger patients
 - Increased exam time and cost, image artifacts, and patient discomfort
- Specialized post-processing software
 - Not required but may improve workflow
 - Provide quantitative measurements
 - Facilitate MR targeted biopsy

	T2-Weighted (T2W) Imaging	Diffusion-Weighted Imaging (DWI)	Dynamic Contrast-Enhanced (DCE)
Pulse sequence	2D RARE, fast-spin-echo (FSE) or turbo-spin-echo (TSE)	2D spin-echo echo-planar imaging (EPI) with spectral fat suppression	3D T1-Weighted (T1W) gradient echo (GRE)
Imaging planes	Axial (straight or oblique); Sagittal and/or Coronal	Axial (match T2W)	Axial (match T2W)
Slice thickness	3 mm, no gap	\leq 4 mm , no gap	3 mm, no gap
Field of View (FOV)	12–20 cm	16–22 cm	12–20 cm
Pixel size	≤ 0.7mm (phase) x ≤0.4 mm (frequency)	\leq 2.5mm (phase and frequency)	\leq 2mm (phase and frequency)
Specific Recommendation	3D axial acquisition as adjunct to 2D not a replacement	TE \leq 90 msec; TR \geq 3000 msec	TE < 5 msec; TR < 100 msec Temporal resolution \leq 15 sec
	Appropriate echo train length to avoid T2 blurring	Apparent Diffusion Coefficient (ADC) maps: low b-value 0-100 sec/mm ² (preferably 50- 100 sec/mm ²); intermediate b-value 800- 1000 sec/mm ²	Low molecular weight gadolinium-based contrast agent (GBCA) Dose: 0.1mmol/kg Injection rate: 2-3 cc/sec
		High b-value (≥ 1400 sec/mm ²): acquired or calculated	Total scan time \geq 2 min (before, during, and after GBCA injection)
		Additional b-values (100-1000 sec/mm ²) for accurate ADC and high b-value calculations	

UTSouthwestern

Clinical Prostate mpMRI Examination

- Philips: 3T and 1.5T Ingenia, 3T and 1.5T Achieva
- Siemens: 3T Skyra; 1.5T Avanto, Aera, and Sola

Scan	Plane	(msec)	TOV (cm)	(mm)	/Gap (mm)	factor	encoding	INSA	(min:sec)
T2W SSTSE	3-Plane	80/1000	44 x 44	2 x 4	20/10	0		1	0:15
T2W TSE	SAG	120/3800	25 x 25	1 x 1	3/0.3	2	FH	1	2:26
T2W TSE	Obl AX	110/3938	18 x 18	0.45 x 0.6	2.5/0	2	RL	1	3:33
DWI SS-EPI	Obl AX	87/2425	16 x 16	1.25 x 1.32	3/0.3	4	RL	2	6:50
T2W TSE	Obl COR	110/2500	16 x 16	0.38 x 0.42	2.5/0	1.6	RL	1	4:50
T1W DCE	Obl AX	2.3/4.6	25 x 25	0.9 x 1	3/0	4	RL	1	5:46
T1W Post	AX	1.3/2.3/3.6	40 x 35	1.6 x 1.7	4/0	2.8	AP	1	0:21

Verify Endorectal Coil (ERC) Position										
3T Ingenia Scan	Imaging Plane	TE/TR (msec)	FOV (cm)	Pixel size (mm)	Slice thickness /Gap (mm)	Accel. factor	Phase encoding	NSA	Scan Time (min:sec)	
T2W SSTSE	T2W SSTSE 3-Plane 80/1000 44 x 44 2 x 4 20/10 0 1 0:15									
SSTSE = S Prostate B	SSTSE = Single-shot turbo spin-echo Frostate									
Costa, Top	Costa, Top Magn Reson Imaging 23 (2014)									

Diffusion-Weighted Imaging (DWI)									
3T Ingenia Scan	Imaging Plane	TE/TR (msec)	FOV (cm)	Pixel size (mm)	Slice thickness /Gap (mm)	Accel. factor	Phase encoding	NSA	Scan Time (min:sec)
SS SE-EPI	Obl AX	87/2425	16 x 16	1.25 x 1.32	3/0.3	4	RL	2	6:50
Sing withADC	le-shot corresp maps:	SE-EPI wi bonding N monoexp	th b-valu ISA of 2, onential	es of 0, 10 2, 4, 6, 6 model	0, 1000, 15	00, 20	00 (3T)	s²/m	ım,
b=0 b=1000 b=2000 ADC									
Costa, To	p Magn Res	on Imaging 23	(2014)					UTSOL	Ithwestern 4

11

T1-Weighted Dynamic Contrast-Enhanced (DCE) Imaging

3T Ingenia Scan	Imaging Plane	TE/TR (msec)	FOV (cm)	Pixel size (mm)	Slice thickness /Gap (mm)	Accel. factor	Phase encoding	NSA	Scan Time (min:sec)
T1W DCE	Obl AX	2.3/4.6	25 x 25	0.9 x 1	3/0	4	RL	1	5:46
T1W Post	AX	1.3/2.3/3.6	40 x 35	1.6 x 1.7	4/0	2.8	AP	1	0:21

- T1W DCE
- 3D spoiled gradient echo sequence (11 s/dyn)
- Variable flip angle T1 mapping (optional)
- T1W post-contrast
- 3D two-point DIXON gradient echo sequence
- Evaluation of lymph nodes and bone lesions

Tissue Contrast Enhancement

Diaz de leon, Magn Reson Imaging Clin N Am 24 (2016)

MRI Protocol for In-bore Biopsy									
Procedure	Scan	Sequence	TE/TR (ms)	FOV (cm)	Acq Voxel (mm)	Scan time			
Device gross position	3-plane localizer	2D bFFE	2/4	30 x 30	1.3 x 2.1 x 10(20)	30sec			
Needle guide position	SAG T2	2D SSTSE	80/1300	26 x 26	0.9 x 1.1 x 3/0.3	19sec			
Drahionay planning	SAG T2	2D TSE	110/3400	23 x 21	0.7 x 0.8 x 3/0.3	3min 30sec			
Prebiopsy planning	Straight AX T2	2D TSE	110/2500	20 x 20	0.6 x 0.8 x 3/0.3	2min 45sec			
Needle guide verification	SAG T2	2D SSTSE	80/1300	26 x 26	0.9 x 1.1 x 3/0.3	19sec			
Needle placement	AX T2	2D TSE	110/2300	20 x 20	0.8 x 0.9 x 3/0.3	1min 38sec			
АВ	1	С							

Costa, Eur Urol Onc 2 (2019)

MRI Protocol for TULSA Therapy									
Procedure	Scan	Sequence	TE/TR (ms)	FOV (cm)	Acq Voxel (mm)	Scan time			
Device gross position	3-plane localizer	2D bFFE	2/4	30 x 30	1.3 x 2.1 x 5.0	30sec			
Device alignment	SAG T2 (straight)	3D TSE	370/1800	30 x 30	1 x 1 x 2 (→1)	3min			
Treatment planning	AX T2	2D TSE	110/2500	26 x 26	0.8 x 0.8 x 3/2	3min			
Temperature mapping	AX Thermometry	2D GRE-EPI FS	12/25	26 x 26	2 x 2 x 5/0.4	5 sec/dyn			
Post-treatment evaluation	AX T1 pre/post Gd	3D DIXON	1.5/2.7/4.3	35 x 30	1.1 x 1.3 x 3	1min 23sec			
SAG Transurethral application Enable or Disable Elements Safety Margin	COR AX	Ablation zone							
Klotz, JURO 205 (2021)	Klotz, JURO 205 (2021)								

Summary

- High-quality prostate mpMRI depends on
 - Hardware, software, scanning parameters, and patient-related factors
- Implementation of prostate MRI protocols
 - PI-RADS technical specifications as guidelines
 - Preloaded sequences by MR vendors
- Optimization of prostate mpMRI protocols
 - Tailored to each scanner and institution
 - High image quality at a patient level
 - Development of novel and advanced MRI technology

19

Thank You!

- UT Southwestern Medical Center
 - Dr. Daniel Costa, Dr. Taemee Pak (Radiologists)
 - Adrian Gaspar, Heather Shelley, Orlando Morales (MRI Technologists)
 - Debbie Travalini (PA-C)

Profound Medical Inc.

- Dipti Joshi (Lead Clinical Product Expert)
- UT MD Anderson Cancer Center
 - Dr. Ho-Ling Anthony Liu
 - Dr. Jingfei Ma

UT Southwestern

UTSouthwestern