

Practical Dosimetry for Therapeutic Nuclear Medicine, MIBG

William D. Erwin, MS, FAAPM Imaging Physics, UT MD Anderson Cancer Center THE UNIVERSITY OF TEXAS MDAnderson Cancer Center

Making Cancer History[®]

Pheochromocytomas and Paragangliomas

Rare neuroendocrine tumors originating in the paraganglia (neural crest origin cells)

- pheochromocytoma: adrenal medulla origin
- paraganglioma: extra-adrenal origin

Clinical manifestations

- predisposition to cardiovascular and gastrointestinal disease
- hormonal

Hereditary in greater than 30% of patients

Most present with localized disease curable with surgery

Metastatic presentation: 15 – 20% (100 – 200 new cases annually)

Jimenez C, William Erwin, Chasen B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers 2019.

substrate of tumor cell membrane norepinephrine transport

- ¹²³I label: diagnostic (pheochromocytoma/paraganglioma, neuroblastoma, cardiac innervation)
- ¹³¹I label: therapeutic (pheochromocytoma/paraganglioma, neuroblastoma)

Low-specific-activity ¹³¹I label (= a large amount of "cold" MIBG carrier)

- Neuroblastoma therapy (another tumor of neural crest origin)
- investigational (pediatric clinical trial, Jubilant Radiopharma Draximage)

High-specific-activity ¹³¹**I label (= essentially carrier-free)**

- pheochromocytoma/paraganglioma therapy
- FDA-approved (Azedra®, Lantheus Progenics)

Jimenez C, William Erwin, Chasen B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers 2019.

296 MBq/kg (8 mCi/kg) per treatment (patients \leq **62.5 kg)** otherwise,

18,500 MBq (500 mCi) per treatment (patients > 62.5 kg)

No. of treatments: 2 (nominally spaced 3 months apart)

Pre-requisites

- Adult or child between the ages of 12 and 18 (we have treated one 17 y.o.)
- positive ¹²³I-MIBG scan
- treatment planning (dosimetry of organs at risk)
 - pre-treatment "tracer" amount of Azedra

3.7 MBq (0.1 mCi)/kg (≤ 50 kg); 222 MBq (6 mCi) (> 50 kg)

- based on serial planar whole body images

Azedra Full Prescribing Information (https://www.lantheus.com//assets/AZEDRA-PI-March-2021.pdf)

Azedra Organ Cumulative (two-treatment) Absorbed Dose Limits

Organ	~1%-rate: mortality or organ failure associated with disease	Time to death or organ failure	Threshold* absorbed-dose for ~1%-rate mortality or organ failure (Gy)
Red marrow	H-ARS mortality	1-2 months	12
Lungs	Pneumonitis mortality	1-7 months	16.5
Kidneys	Renal failure	>1 year	18
Liver	Hepatomegaly, ascites: possible organ failure	0.5-3 months	31
Small intestine	GI-ARS mortality	6-9 days	40

Only lungs (17.5 Gy), kidneys (23 Gy) and liver (30 Gy) considered at risk in clinical trials MIBG uptake in heart muscle (wall)

- norepinephrine transport involved in cardiac innervation
- the heart wall is nonetheless not considered an organ at risk for Azedra therapy

Azedra Full Prescribing Information (https://www.lantheus.com//assets/AZEDRA-PI-March-2021.pdf)

Based on guidelines developed for the expanded-access protocol clinical trial

(dosimetry transitioned from central lab to participating clinical sites)

Covers all steps EXCEPT for MIRD dose calculation part (more on this later)

- 1. organ mass
- 2. ¹³¹I-MIBG whole body scanning (speed, energy window, collimation, imaging time points)
- 3. organ and whole body region of interest analysis
- 4. calculation of fraction of injected activity (FIA) vs. time (TAC)
- 5. TAC fit and residence time (a.k.a. time-integrated activity coefficient, or TIAC) calculation
- 6. maximum allowable activity calculation

Worked example included

Azedra Dosimetry Guide (https://www.azedra.com/content/pdf/3_Dosimetry_Guide_1019.pdf)

CT-based Liver and Kidney(s) Mass Estimation

Azedra Dosimetry Guidelines: mass = volume × 1.03 g/cc

CT-based Lung(s) Mass Estimation

Azedra Dosimetry Guidelines: volume × 0.25 g/cc

volume estimate varies based on scan technique (breath-hold, free-breathing, respiratory-gated) Busse method (technique-independent): volume × 1.04 g/cc × Lung mean HU – Air mean HU Tissue mean HU – Air mean HU

n technique fer internel decimetry emplications. Med Days 2012;40(12)

Busse N et al. Evaluation of a semiautomated lung mass calculation technique for internal dosimetry applications. Med Phys 2013;40(12) MD ANDERSON CANCER CENT

Organ Mass Estimation

Number of kidneys =		2	kidney(s)			
Kidney vol (cc)	335.9	345.9	gram	Rt Kidney cc	177.0	Lt Kidney cc	158.9
Liver vol (cc)	1771.2	1824.3	gram				
	cc	Average HU	Air HU	Tissue HU			
Left Lung	2072.5	-766.9	-1001.9	52.1		Fixed Lung	
Right Lung	2525.9	-775.6				Density = 0.25	
Total Lung Mass		1044.9	gram	Busse method		1149.6	gram
NOTE: If single kidney ROI us	ed and TWO kidn	eys present, n	nust scale	%IA for total l	kidney %IA		
Patient	Total Body Mass	60.8	kg	Use Adult Fen	nale Phante	om for calculat	tions
NOTES							
Right kidney overlanned by liv	er so its BOL coun	ts not accurate	2				
Carla la fa la la overlapped by ite							
Scale left kidney %IA to estim	ate total kidney %	IA (using mass	ratios).				
Extrapolation factor = (g/	/ g) =		2.11				

- If there are two kidneys but left only is used for analysis, scale FIA by (M_{right} + M_{left}) / M_{left} (assumes equivalent physiologic function per unit mass between the two kidneys)
- 2. patient-specific lung and kidney masses crucial when the patient has only one of either!(we have treated one patient with one kidney and one patient with one lung)

Azedra Whole Body Imaging

- 364 keV/15% energy window, ME or HE (preferred), constant scan length between scans
- Day 0 (within 1st-hour): pre-void, Day 1-2 (24 48 h) and Day 2-5 (48 120 h): post-void

Azedra Regions of Interest (both kidneys)

000

Azedra Regions of Interest (Left Kidney Only)

Azedra Organ ROI FIA vs. Time Calculation (geometric mean)

Azedra Dosimetry Guidelines

$$FIA_{organ}(t) = \frac{\sqrt{C_{organAnt}(t) \times C_{organPost}(t)}}{\sqrt{C_{wholebodyAnt}(0) \times C_{wholebodyPost}(0)}} \times \frac{\sqrt{C_{standardAnt}(0) \times C_{standardPost}(0)}}{\sqrt{C_{standardAnt}(t) \times C_{standardPost}(t)}}$$

Day 0 whole body pre-void activity assumed to be FIA = 1, i.e., an attenuated standard

Caution: decaying reference standard normalizes for scan speed, but also corrects for physical decay, resulting in biologic FIA vs. time. Apply $e^{-\lambda_{l-131} \times t}$ to obtain ¹³¹I effective FIA vs. time.

A simpler, more reliable and exact way (in the presenter's opinion)

$$FIA_{organ}(t) = \frac{\sqrt{C_{organAnt}(t) \times C_{organPost}(t)}}{\sqrt{C_{wholebodyAnt}(0) \times C_{wholebodyPost}(0)}} \times \frac{X \ cm/min}{15 \ cm/min}$$

where X = scan speed at time t (=15 for Day 0, 10 for Day 1–2, and 5 for Day 2–5)

Azedra Organ ROI TAC Fit and Residence Time (TIAC) Calculation

Fit 3-point FIA(t) with any function (as long as it is $FIA_0e^{-\lambda t}!$)

TIAC =
$$_0 \int_{\infty}^{\infty} FIA_0 e^{-\lambda} eff^t dt$$
 (simply FIA₀ / λ_{eff} , $\lambda_{eff} = \lambda_{biol} + \lambda_{l-131}$)

 $\mathbf{d_k} = (37/1000) \times [\Sigma_h \mathsf{TIAC}_h \times \mathsf{S}(\mathsf{k} \leftarrow \mathsf{h}) + \mathsf{TIAC}_{\mathsf{RB}} \times \mathsf{S}(\mathsf{k} \leftarrow \mathsf{RB})]$

k = target organ, h = source organ, RB = remainder of body

S = dose factor (mGy/MBq-h); 37 MBq/mCi; 1/1000 Gy/mGy

<u>Organ self-dose factor mass correction (kidneys, liver, lungs)</u> $S(k \leftarrow k)_{corr} = S(k \leftarrow k)_{\beta} \times (m_{ref}/m_{pat}) + S(k \leftarrow k)_{photon} \times (m_{ref}/m_{pat})^{2/3}$

Remainder of Body dose factor

 $S(k \leftarrow RB) = (m_{TB}/m_{RB}) \times S(k \leftarrow TB) - \Sigma_{h} (m_{h}/m_{RB}) \times S(k \leftarrow h)$ TB = total body; $m_{RB} = m_{TB} - \Sigma_{h} m_{h}$

Azedra Cumulative Therapy Activity Calculation (mCi)

The smallest among:

Planned

Red Marrow Dose-Limiting Lungs Dose-Limiting Kidneys Dose-Limiting Liver Dose-Limiting Small Intestine Dose-Limiting $8 \text{ mCi/kg} \times M_{\text{TotalBody}} \times 2$ $12 \text{ Gy / d}_{\text{RM}}$ $16.5 \text{ Gy / d}_{\text{Lungs}}$ $18 \text{ Gy / d}_{\text{Kidneys}}$ $31 \text{ Gy / d}_{\text{Liver}}$ $40 \text{ Gy / d}_{\text{SI}}$

- 1. In our experience, kidneys have been most likely to limit the prescribed activity
- 2. RM and SI targets only, i.e., not quantified sources, so extremely unlikely to be dose-limiting

Example Azedra Cumulative Therapy Activity

Organ	Gy/mCi
Adrenals	5.48E-03
Brain	3.60E-03
Breasts	3.69E-03
Gallbladder Wall	5.59E-03
LLI Wall	4.44E-03
Small Intestine	4.44E-03
Stomach Wall	4.70E-03
ULI Wall	4.77E-03
Heart Wall	1.47E-02
Kidneys	2.13E-02
Liver	1.18E-02
Lungs	8.70E-03
Muscle	4.00E-03
Ovaries	4.51E-03
Pancreas	5.37E-03
Red Marrow	3.59E-03
Osteogenic Cells	3.60E-03
Skin	3.30E-03
Spleen	4.77E-03
Thymus	4.40E-03
Thyroid	3.81E-03
Urinary Bladder Wall	4.03E-03
Uterus	4.48E-03
Total Body	4.51E-03

Therapy Radiation Doses & Limits on Dose/Administered Activity									
Proposed Activity (mCi)->	486.4	972.8	(60.8 k	(60.8 kg total body mass)					
	Gy Gy Limiting Dose Limiting Acti					ctivity			
Kidneys	10.4	20.8	18	Gy	<mark>84</mark> 3	mCi			
Liver	5.7	11.5	31	Gy	2626	mCi			
Lungs	4.2	8.5	16.5	Gy	1898	mCi			
Red Marrow	1.7	3.5	12	Gy	3347	mCi			
Small Intestine	2.2	4.3	40 Gy 9		9009	mCi			
			Max all	owable activi	ty (mCi)=	843			

Activity & Organs-at-Risk Dose Prescriptions

Treatment 1 Treatment 2 Prescribed Activity (mCi) 422 422 Dose (Gy) Dose (Gy) **Kidneys** 9.0 9.0 Liver 5.0 5.0 3.7 3.7 Lungs **Red Marrow** 1.5 1.5 Small Intestine 1.9 1.9

(Each 1/2 of Maximum allowable activity)

CT organ VOI contouring

Scanner workstation software; 3rd-party (e.g, MIM, OsirixMD); freeware (e.g., MIPAV, 3D Slicer)

¹³¹I whole body planar organ ROI contouring and total counts tabulation

Scanner workstation software; 3rd-party (e.g, MIM, Hermes HD, ABX-CRO QDOSE (EU)); freeware (e.g, ImageJ, Fiji)

Geometric mean TAC analysis and TIAC calculation

Commercial software (e.g., Hermes HD, QDOSE (EU), MS Excel, GraphPad Prism)

Olinda 1.1 (legacy from Vanderbilt, if you already have it) or Olinda 2.0 (current, from Hermes Medical Solutions)

MIRD dose calculation

Olinda 1.1 or Olinda 2.0

IDAC-Dose2.1 (https://www.idac-dose.org/, used by QDOSE)

Obtain MIRD phantom dose factors (incl. lung, kidney and liver "self" β and photon) and calculate yourself

Commission your TP software, to ensure correctness, and find and fix (or workaround) any "bugs".

Dosimetry study (1st try)

Kidney vol (cc)	268.0	276.0	gram	

Fitting parameters: $y = A_1 e^{-k_1 x} + A_2 e^{-k_2 x}$

	A1	k1	T1/2eff	TIAC
Left Ki	0.0516	0.0320	21.7	1.6149
Right	0.0528	0.0247	28.1	2.1399

Therapy Radiation Doses & Limits on Dose/Administered Activity									
Proposed Activity (mCi)->	446.4	892.8							
	Gy	Gy	Limi	iting Dose	Limiting A	Activity			
Kidneys	28.9	57.8	18	Gy	278	mCi			
Liver	6.2	12.5	31	Gy	2222	mCi			
Lungs	8.3	16.7	16.5	Gy	883	mCi			
Red Marrow	2.3	4.7	12	Gy	2284	mCi			
Small Intestine	2.9	5.8	40 Gy		6178	mCi			
	Max all	owable activi	ity (mCi)=	278					

Activity & Orga	ns-at-Risk Do	se Prescrip	tions					
	Treatment 1	Treatment 2						
Prescribed Activity (mCi)	139	139	(Each 1/	/2 of	Maxim	um allowa	able activit	ty)
	Dose (Gy)	Dose (Gy)						
Kidneys	9.0	9.0						
Liver	1.9	1.9						
Lungs	2.6	2.6						
Red Marrow	0.7	0.7						
Small Intestine	0.9	0.9						

Dosimetry study (2nd try, post-double nephrostomy)

0-1hr I-131 MIP-IB12B [Photopeak] Anterior

Kidney vol (cc)	390.7	402.4	gram

Fitting parameters: $y = A_1 e^{-k_1 x} + A_2 e^{-k_2 x}$

9		A1	k1	T1/2eff	TIAC
	Left Ki	0.0271	0.0521	13.3	0.5191
	Right	0.0433	0.0601	11.5	0.7202

Therapy Radiation Doses & Limits on Dose/Administered Activity									
Proposed Activity (mCi)->	403.2	806.4							
	Gy	Gy	Limi	ting Dose	ing Dose Limiting Ad				
Kidneys	7.1	14.3	18	Gy	1018	mCi			
Liver	5.2	10.4	31	Gy	2401	mCi			
Lungs	4.3	8.5	16.5	Gy	1559	mCi			
Red Marrow	1.2	2.5	12	Gy	3941	mCi			
Small Intestine	1.5	3.0	40	Gy	10865	mCi			
			Max allowable activity (mCi)=						
Activity & Organ	ns-at-Risk Do	se Prescrip	tions						
	Treatment 1	Treatment 2							
Prescribed Activity (mCi)	403	403	(Each 1	/2 of Maxim	um allowa	ble activity)			
	Dose (Gy)	Dose (Gy)							
Kidneys	7.1	7.1							
Liver	5.2	5.2							
Lungs	4.3	4.3							
Red Marrow	1.2	1.2							
Small Intestine	1.5	1.5							

One (right) lung

	Ri	ight Lun	g 16	578.6 CC		530	.6	gran	n	
Fitting p	arameters:	$\mathbf{y} = \mathbf{A}_1 \mathbf{e}^{T}$	^{k1x} + A ₂ e	-k2x						
	1	1		k1				T1/2ef	f	TIAC
Right Lung	0	.1583		0.0481				14.4		3.2940
		The	erapy Radiati	on Doses & I	imits or	Dose	/Admi	nistered A	ctivity	
	Proposed Activi	ity (mCi)->	500.0	1000.0		0000	///	instered /	leavily	
			Gy	Gy	Limi	ting D	ose	Limiting	Activity	-
	Kidneys		7.9	15.8	18	Gy		1142	<i>r</i> mCi	-
	Liver		2.5	5.0	31	Gy		6253	mCi	1
	Lungs		14.7	29.5	16.5	Gy		560	mCi	1
	Red Marrow		1.3	2.5	12	Gy		4714	mCi	7
	Small Intestine		1.6	3.1	40	Gy		12794	mCi	7
					Max all	owabl	e activ	/ity (mCi)=	560	
	Activit	y & Organs	s-at-Risk Do	se Prescript	ions					
			Treatment 1	Treatment 2						
	Prescribed Activ	/ity (mCi)	280	280	(Each 1	/2 of	Maxim	ium allowa	able activit	ty)
			Dose (Gy)	Dose (Gy)						
		Kidneys	4.4	4.4						
		Liver	1.4	1.4						
		Lungs	8.3	8.3						
	Rec	d Marrow	0.7	0.7						
	Small	Intestine	0.9	0.9						

If MIRD reference phantom lung mass (1000 g) was assumed,

Tx activity would be 1000 mCi \rightarrow ~2x the dose (31 Gy) to the lung!

One (right) kidney (completely overlapped by liver)

Quantitative SPECT TAC

Q: FIA(t) = GM Planar FIA(t)? A: Probably not.
If not, then the derived TIAC, Gy/mCi and, potentially,
therapeutic activity prescription could be significantly different.
(In this case, however, lung was the activity-limiting organ)

Summary

Azedra treatment planning is reasonably straightforward to implement

- CT lung, liver and kidney volumes plus three planar Azedra "dosimetric" whole body scans
- organ FIA = planar GM ROI total counts scaled to initial total body (normalized for scan speed)
- mono-exponential fit of organ FIA(t), and organ TIAC is simply FIA(0)/ λ_{eff}
- simple cumulative mCi calculation (8 mCi/kg × M_{TB} × 2 ≤ 1000 or organ Gy limit ÷ Gy/mCi)
- can utilize a combination of scanner, commercial, free and/or in-house software

However, for MIRD dose (mGy/MBq) calculation step, one must: Either already have OLINDA/EXM 1.1 (legacy) or purchase OLINDA/EXM 2.0 OR obtain IDAC-Dose2.1

OR obtain dose factors and develop in-house calculations

Summary

Azedra treatment planning (dosimetry of organs at risk) limitations

- overlap (liver/R kidney, kidneys/GI tract, heart wall/L lung, tumor/organ, organ/tissue background)
- accuracy/uncertainty of planar image-based FIA(t), TIAC and dose (including mass correction)?
 doses calculated dependent upon choice of "engine" (OLINDA vs. IDAC-Dose2.1 vs. in-house)
- guidelines and dose limits assume whole body planar image-based dosimetry quantitative effect of SPECT-based dosimetry (e.g., for R kidney only with liver overlap on planar)?
- May be a tedious manual process, with numerous steps that include manual entry of data plenty of room for mistakes, including those of the transcription kind

Regardless of methodology and tools used, <u>commissioning and SOP development recommended</u>

References

- 1. Jimenez C, Erwin W, Chasen B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers 2019; 11(7):1018; doi:10.3390/cancers11071018
- Monsieurs M, Brans B, Bacher K, Dierckx R, Thierens H. Patient dosimetry for ¹³¹I-MIBG therapy for neuroendocrine tumours based on ¹²³I-MIBG scans. Eur J Nucl Med 2002; 29:1581-7
- 3. Coleman RE, Stubbs JB, Barrett JA, de la Guardia M, LaFrance N, Babich JW. Radiation dosimetry, pharmacokinetics, and safety of Ultratrace[™] iobenguane I-131 in patients with malignant pheochromocytoma/paraganglioma or metastatic carcinoid. Cancer Biother Radiopharm 2009; 24(4):469-75
- Buckley SE, Chittenden SJ, Saran FH, Meller ST, Flux GD. Whole-body dosimetry for individualized treatment planning of ¹³¹I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med 2009; 50:1518-24
- 5. Chin BB, Kronauge JF, Femia FJ, et al. Phase-1 clinical trial results of high-specific-activity carrier-free ¹²³I-iobenguane. J Nucl Med 2014; 55:1-7