Considerations for Evaluating Color Displays

Nicholas B. Bevins, Ph.D., DABR
AAPM Annual Meeting 2021
Outline

- Defining Color
 - Pseudo vs. True Color
 - Photometry → Colorimetry
 - Chromaticity
 - Color Spaces
- Gray Tracking
 - AAPM TG270
 - AAPM TG196
- Tools, Software
- Ongoing Efforts
Color in Medical Imaging

Pseudo Color Images
- Nuclear Medicine Fused Images
- Ultrasound Doppler Images
- MRI Elastography Images
- CT Perfusion Images

True Color Images
- Digital Pathology Images
- Ophthalmologic Images
- Dermatologic Images

Photometry

- Science of measuring light as it is perceived by the human visual system
- Luminosity weighting functions for radiant power as a function of wavelength
- Different weighting for different visual responses (luminance dependent)
Colorimetry

- Extending to colors, spectral weighting functions defined by CIE
 - 1931 Standard Colorimetric Observer
- Based on human observer studies looking at perceptible differences between colors

\[
X = \int_{\lambda} L_{x,\Omega,\lambda}(\lambda) \bar{r}(\lambda) d\lambda \\
Y = \int_{\lambda} L_{y,\Omega,\lambda}(\lambda) \bar{y}(\lambda) d\lambda \\
Z = \int_{\lambda} L_{z,\Omega,\lambda}(\lambda) \bar{z}(\lambda) d\lambda
\]

Chromaticity

- Separating color into brightness and chromaticity
 - "Quality" of color

\[
x = \frac{X}{X + Y + Z} \\
y = \frac{Y}{X + Y + Z} \\
z = \frac{Z}{X + Y + Z} = 1 - x - y
\]
Color Spaces

- Perceptible colors and displayable colors are not equal for most systems
- Color spaces define representable colors from all chromaticities
- RGB color models are most common
 - sRGB
 - Adobe RGB

The sRGB color space is likely the most common color space
- “Default” for most display systems
- Defined by three chromaticity coordinates (R, G, B) and a white point
- Also defined by specific luminance response and viewing conditions
 - Pseudo gamma 2.2
 - Not GSDF

<table>
<thead>
<tr>
<th>Chromaticity</th>
<th>Red</th>
<th>Green</th>
<th>Blue</th>
<th>White</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x)</td>
<td>0.6400</td>
<td>0.3000</td>
<td>0.1500</td>
<td>0.3127</td>
</tr>
<tr>
<td>(y)</td>
<td>0.3300</td>
<td>0.6000</td>
<td>0.0600</td>
<td>0.3290</td>
</tr>
<tr>
<td>(Y)</td>
<td>0.2126</td>
<td>0.7152</td>
<td>0.0722</td>
<td>1.000</td>
</tr>
</tbody>
</table>
Color Differences

- Describing the quantitative difference between colors
- CIE 1931 color diagram is not perceptually uniform
 - MacAdam ellipses
 - All colors within ellipse are indistinguishable
 - Based on human observer studies
- Efforts to transform for perceptual uniformity
 - CIE 1960 UCS
 - CIE 1976 UCS
Color Difference

- Color difference has been through many iterations
- General improvements to overall linearity for perceptual changes
- Increasingly complicated formula for higher precision
- For small differences, $\Delta(u', v')$ is relatively accurate

\[
\Delta(u', v') = \sqrt{(u'_1-u'_2)^2 + (v'_1-v'_2)^2}
\]

\[
\Delta E_{ab}^* = \sqrt{(L'_2-L'_1)^2 + (a'_2-a'_1)^2 + (b'_2-b'_1)^2}
\]

\[
\Delta E_{a^*b^*} = \sqrt{\left(\frac{\Delta L'}{K_L} + \frac{\Delta C_{a^*b^*}}{K_{C_a^*b^*}} + \frac{\Delta H_{a^*b^*}}{K_{H_{a^*b^*}}}\right)^2}
\]

\[
\Delta E_{a^*b^*c^*} = \sqrt{\left(\frac{\Delta L'}{K_L} + \frac{\Delta C_{a^*b^*}}{K_{C_a^*b^*}} + \frac{\Delta H_{a^*b^*}}{K_{H_{a^*b^*}}} + \frac{\Delta C_{a^*b^*}}{K_{C_{a^*b^*}}} + \frac{\Delta H_{a^*b^*}}{K_{H_{a^*b^*}}}\right)^2}
\]

Outline

- Defining Color
 - Pseudo vs. True Color
 - Photometry → Colorimetry
 - Chromaticity
 - Color Spaces
- Gray Tracking
 - AAPM TG270
 - AAPM TG196
- Tools, Software
- Ongoing Efforts
Gray Tracking and White Point

- Color of the light output by the display throughout the grayscale
- Evaluate by measuring the color difference
 \[\Delta = \sqrt{(u_1' - u_2')^2 + (v_1' - v_2')^2} \]
- Compared against
 - Other display
 - Standard illuminant (e.g., D65)
 - Full brightness (TG196 methodology)

Standard Illuminants

- Standard illuminant (e.g., D65) should be used instead of correlated color temperature (CCT)
 - CCT is defined as multiple points in color space
 - The maximum difference between the points is large
Gray Tracking (TG270 Methodology)

- **Comparing two displays**

<table>
<thead>
<tr>
<th>Optimal Limit</th>
<th>Acceptable Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Same Workstation</td>
<td>(\Delta (u', v') \leq 0.005)</td>
</tr>
<tr>
<td>Same Image Review Chain</td>
<td>(\Delta (u', v') \leq 0.01)</td>
</tr>
</tbody>
</table>

- **Comparing display to standard illuminant**

<table>
<thead>
<tr>
<th>Optimal Limit</th>
<th>Acceptable Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diagnostic Display</td>
<td>(\Delta_{D65} (u', v') \leq 0.005)</td>
</tr>
<tr>
<td>Modality, EHR, CS</td>
<td>(\Delta_{D65} (u', v') \leq 0.01)</td>
</tr>
</tbody>
</table>
Gray Tracking (TG196 Methodology)

- AAPM TG196 Gray Tracking
 - Four metrics:
 \[\tau_1, \tau_2, \tau_{1,\text{max}}, \tau_{2,\text{max}} \]
 - \(\tau_1 \) defines color difference from maximum luminance chromaticity
 - \(\tau_2 \) defines color difference from neighboring luminance chromaticity

\[
\tau_n = \frac{1}{N-1} \sum_{j=1-N}^{N} \Delta_n'(u', v')
\]
\[
\tau_{n,\text{max}} = \max(\Delta_n'(u', v')_k)
\]
\[
\Delta_1(u', v') = \sqrt{(u'_j - u'_{18})^2 + (v'_j - v'_{18})^2}
\]
\[
\Delta_2(u', v') = \sqrt{(u'_j - u'_{j-1})^2 + (v'_j - v'_{j-1})^2}
\]

Gray Tracking (TG196 Methodology)

- Good Tracking
 \[
 \tau_1 = 0.0013 \\
 \tau_{1,\text{max}} = 0.0021 \\
 \tau_2 = 0.0003 \\
 \tau_{2,\text{max}} = 0.0009
 \]

- Poor Tracking
 \[
 \tau_1 = 0.0096 \\
 \tau_{1,\text{max}} = 0.0161 \\
 \tau_2 = 0.0016 \\
 \tau_{2,\text{max}} = 0.0029
 \]
Outline

- Defining Color
 - Pseudo vs. True Color
 - Photometry → Colorimetry
 - Chromaticity
 - Color Spaces
- Gray Tracking
 - AAPM TG270
 - AAPM TG196
- Tools, Software
- Ongoing Efforts

Devices

- Colorimeters
 - Determines chromaticity by use of filters
 - May also report luminance or illuminance
- Spectroradiometers
 - Measures amplitude of light as a function of wavelength
 - Results combined with color matching functions

<table>
<thead>
<tr>
<th></th>
<th>Colorimeters</th>
<th>Spectroradiometers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output</td>
<td>Chromaticity Coordinates</td>
<td>Spectral power by wavelength</td>
</tr>
<tr>
<td>Accuracy</td>
<td>Modest (generally a function of cost)</td>
<td>High</td>
</tr>
<tr>
<td>Cost</td>
<td>Low-modest ($200-$1,000)</td>
<td>High ($5,000-$50,000+)</td>
</tr>
</tbody>
</table>
Software

- Vendors of medical displays often provide software for calibration and conformance testing
 - Color displays may allow for specified white point (based on CCT or chromaticity coordinate)
 - Significant deviation from “native” may result in other issues

Third-party software for verification and QC

pacsDisplay
- Developed at HFHS
- Calibrate displays to GSDF
- QC for displays
- Free and open source
- pacsdisplay.org
Software: pacsDisplay

- pdQC suite
 - Palette tool to “dial-in” any RGB level for evaluation
 - Meter tool to measure both luminance and chromaticity coordinates

Outline

- Defining Color
 - Pseudo vs. True Color
 - Photometry → Colorimetry
 - Chromaticity
 - Color Spaces
- Gray Tracking
 - AAPM TG270
 - AAPM TG196
- Tools, Software
- Ongoing Efforts
AAPM Efforts

- 2005 TG18 report
 - Limited to $\Delta(u',v')$ for the white point
- 2016 TG196 report
 - Defined gray tracking metrics
 - Compared accuracy between reference and field colorimeters
- 2019 TG270 report
 - Described both white point difference and TG196 metrics
 - Promoted gray tracking as part of routine QC
- TG322
 - Continuation of TG196 efforts
 - Currently stalled, may defer to ongoing IEC development

IEC Efforts

- Currently under a new work item proposal (NWIP-62635-3)
 - Part of TC 62/SC 62B/WG 51
 - Basic color accuracy evaluation methods
 - Limited scope
- Future work (62635-4?) would define more rigid limits, expectations
Conclusion

- Color displays are widely used throughout medical applications
 - Used to display both color and grayscale images
- Color display evaluation for medical applications still a work in progress
- Basic measurement of color values as part of routine QC as a first step

Thank you