HyTEC- The Project and the Product

Ellen Yorke

Memorial Sloan Kettering Cancer Center

History: Quest for Optimal Uncomplicated Tumor Control

Holthusen H. Strahlentherapie. 1936;57:254–269.

Volume 18, Number 4	R. D. Timmerman	October 2008
ELSEVIER		ONCOLOGY
Sec. (w)		Seminars in RADIATION

An Overview of Hypofractionation and Introduction to This Issue of *Seminars in Radiation Oncology*

Rubin P, Bakemeir RF. Clinical Oncology for medical students and physicians: a multidisciplinary approach, 4th ed. American Cancer Society 1974

FIG. 2-40. Curve of tumor control (1 year recurrence-free), curve of skin complications (within 1 year), and curve of smooth healing calculated by Strandqvist using the iso-effect equivalent single doses. (Courtesy: Strandqvist: *Acta Radiol. Suppl.*, 55, 1, 1944.)

Strandqvist 1944 in Gilbert Fletcher's textbook, 1973 Edition

- Early 1900's: Hypofractionation-convenience, technical simplicity
- 1920's-30's and on: observed complications lead to 'conventional fractionation' for curative treatments
- 1950's Leksell- Gamma Knife

Leksell L: The stereotaxic method and radiosurgery of the brain. Acta Chirurg Scand 102:316-319, 1951

• Yet most new technology develops with conventional fractionation

HyTEC: '<u>Hy</u>' Dose per Fraction, <u>Hypofractionated Treatment Effects in the Clinic</u>

Steering Committee: Jimm Grimm, Ph.D. Ellen Yorke, Ph.D. Lawrence B. Marks, M.D. Andrew Jackson, Ph.D. Brian D. Kavanagh, M.D. Jinyu Xue, Ph.D.AAPM Working Group on SBRT (WGSBRT), Biological Effects Subcommittee (BESC)

INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY-PHYSICS

VOLUME 21, NUMBER 1

MAY 15, 1991

TABLE OF CONTENTS

THREE-DIMENSIONAL PHOTON TREATMENT PLANNING REPORT OF THE COLLABORATIVE WORKING GROUP ON THE EVALUATION OF TREATMENT PLANNING FOR EXTERNAL PHOTON BEAM RADIOTHERAPY

• Preparing for computerized, 3D treatment planning and delivery

TOLERANCE OF NORMAL TISSUE TO THERAPEUTIC IRRADIATION

B. EMAMI, M.D.,¹ J. LYMAN, Ph.D.,⁵ A. BROWN, M.D.,⁴ L. COIA, M.D.,³ M. GOITEIN, Ph.D.,⁴ J. E. MUNZENRIDER, M.D.,⁴ B. SHANK, M.D.,² L. J. SOLIN, M.D.³ AND M. WESSON, M.D.²

- Most severe radiation-induced complication in 28 normal organs
 - The 'Emami paper'
- Conventional fractionation only. Adults only.
- Due to scarce literature-clinicians' consensus recommendations.
- TD5/5 and TD50/5 (dose for 5 and 50% complication by 5 years)

Complication depends on dose and irradiated volume

- Simple dose distribution-uniform dose to whole, 2/3 and 1/3 organ, zero to rest
 - 'partial organ irradiation' like parallel opposed

		TD 5/5 Volume		1	TD 50/5 Volume		
Organ	<u>1</u> 3	$\frac{2}{3}$	33	$\frac{1}{3}$	2 3	<u>3</u> 3	Selected endpoint
Kidney I Kidney II	5000	3000*	2300	-	4000*	2800	Clinical nephritis

End Point: Myelitis/necrosis

ference Length: 20 cm

D50 - 66.5

Modeled dose-volume complication incidence as sigmoidal curve

n = 0.05 ≿ 0.9 PROBABIL 0.8 0.7 FITTING OF NORMAL TISSUE TOLERANCE DATA TO AN ANALYTIC FUNCTION 0.6 z COMPLICATIO C. BURMAN, PH.D., ¹ G. J. KUTCHER, PH.D., ¹ B. EMAMI, M.D.² AND M. GOITEIN, PH.D.³ 0.4 0.3 0.2 0. 10. 20. 30. 40. 50. 60. 70. 80. 90. 100 DOSE (Gy) Fig. A26. Complication probability vs. dose for the spinal cord

Due to major technological changes a new consensus review of normal tissue complications was published in 2010 in **LROBP**

Quantitative Analyses of Normal Tissue Effects in the Clinic

Volume 76, Issue 3, Supplement, Pages S1-S160 (1 March 2010)

- All guidelines from peer-reviewed published data
- 16 organs, range of complications
- Mostly conventional fractionation
- Table of practical dosimetric guidelines per organ

Lung	Whole organ	3D-CRT	Symptomatic pneumonitis	$V20 \le 30\%$	<20	For combined lung. Gradual dose response
	Whole organ Whole organ Whole organ Whole organ Whole organ	3D-CRT 3D-CRT 3D-CRT 3D-CRT 3D-CRT	Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis Symptomatic pneumonitis	Mean dose = 7 Mean dose = 13 Mean dose = 20 Mean dose = 24 Mean dose = 27	5 10 20 30 40	Excludes purposeful whole lung irradiation

Standard article format

- Clinical Significance- Describes the clinical situations where the organ is irradiated, and the incidence/significance of organ injury.
- Endpoints- Describes the different endpoints often considered when assessing injury, the impact of endpointselection on the reported injury rates, the challenges/utilities of different endpoints, and the time course of organ injury.
- Challenges Defining Volumes- Describes how the organ is typically defined (or segmented) on treatment planning images. Includes a discussion of uncertainties/challenges in organ definition (e.g. changes in organ volume/shape during therapy), and the associated impact on DVH's and dose/volume/outcome analyses.
- Review of Dose/Volume Data- A comprehensive summary of reported 3D dose/volume data for clinically-relevant outcomes.
- Factors Affecting Risk- Other clinical factors affecting the risk of injury are noted (e.g. age, combined modality therapy, dose fractionation).

- Mathematical/Biological Models Models that have been used to relate 3D dose/volume data to clinical outcomes are summarized, along with associated model parameters, limitations and uncertainties.
- Special Situations- Most of the data discussed relates to conventional fractionation. This section describes situations were the presented data/models may not apply (e.g. hypofractionation).
- Recommended Dose/Volume Limits- The available information is condensed into meaningful dose/volume
- limits, with associated risk rates, to apply clinically. 9. Future Toxicity Studies- Describes areas in need of future
- study.
- Toxicity Scoring- Recommendations on how to score organ injury.

TIME MARCHES ON

Increasing safe and effective clinical use of stereotactic body radiation therapy -SBRT, aka Stereotactic Ablative Radiotherapy or SABR- for disease sites throughout the body

HyTEC=Hypofractionated Treatment Effects in the Clinic

AMERICAN ASSOCIATION **IYSICISTS IN MEDICINE** Approved in 2011

AAPM COMMITTEE TREE

Improving Healt

Mv AAPM

Mission &

Strategic Plan Policies & Proc

Association

Governance

Committees Committee

Classifieds

History & Herito

Individual Appointments

Chapters

Public & Media

International Medical Physicis

Members

•

 \bullet

 \bullet

AAPM Staff Contacts

Through Medical Physics

s	Radiotherapy	up on Biological Effects of Hypofractionated y/SBRT (WGSBRT) age (bookmarks show under "My AAPM" in the menu to left)
	Committee Web	site Directory: Committee Membership
cedures	Email	You may send email to this group now using gmail or outlook. - or - You may save the address 2019.WGSBRT@aapm.org to your local address book. This alias updates hourly from the AAPM Directory.
age st	Charge	 The radiobiology of hypofractionated treatments may differ considerably from that of standard fractionated treatments, in regards to repair, reoxygenation, dose-rate effects, volume effects, fraction size effects, etc. The working group will generate reports, including but not limited to, critically surveying the published data regarding: Tumor response: review of the effect of hypofractionation on loca control. Normal tissue response: review of the effect of hypofractionation on normal tissue tolerances. Radiobiology of hypofractionated treatments. Clinical rationales for the diverse prescription schemes in current use (e.g. 20GyX3 vs 24GyX1). Standards for reporting outcome, including endpoints, defining/contouring of target and normal structures, dose definitions.

AAPM Working Group, under BESC

Multiple 'blind' reviewers per paper

Science Council

Each article has 10 standard sections

9 TPC, 7 NTCP, Introduction, 3 'Vision' papers

1. Clinical significance

2. Endpoints

- 3. Challenges defining and segmenting anatomic volumes
- 4. Review of outcomes data
- Factors affecting outcomes
- 6. Mathematical/biological models

7. Special situations

8. Recommended dose-volume objectives

9. Future studies

10. Reporting standards for outcomes

Steering Committee: Jimm Grimm, Ph.D. Ellen Yorke, Ph.D. Lawrence B. Marks, M.D. Andrew Jackson, Ph.D. Brian D. Kavanagh, M.D. Jinyu Xue, Ph.D. AAPM Working Group on SBRT (WGSBRT), Biological Effects Subcommittee (BESC)

0 https://aapm.org/pubs/default.asp

Improving Health Through Medical Physics

My AAPM

AAPM Publications Medical Physics Journal Journal of Applied Clinical Medical Physics Online ICRU Publications Online NCRF Publications

Special IJROBP Issue 5/1/21 Member link at AAPM website

chosen by steering committee, TPC,

International Journal of Radiation Oncology biology • physics

HyTEC Introduction

High Dose per Fraction, Hypofractionated Treatment Effects in the Clinic (HyTEC): An Overview

Jimm Grimm, PhD, *'[†] Lawrence B. Marks, MD, [‡] Andrew Jackson, PhD, [§] Brian D. Kavanagh, MD, ^{||} Jinyu Xue, PhD, [¶] and Ellen Yorke, PhD[§]

A summary of the key dose, volume, and outcome data for the organs and tumors considered in HyTEC is provided in Tables 2 and 3. In generating the table entries, preference was given to providing published clinical data when available. Thus, for situations where both clinical and model-based data were available, the clinical data were

methods, and there are statistical issues (eg, competing risks, a failure to consistently assess for local failure in patients with systemic disease, and favorable patient

The HyTEC authors took the pragmatic approach of reviewing the available literature and pooling data from publications containing the minimal set of data elements needed for a meaningful analysis (eg, clearly stated dose schedules, prescription practices, critical structure dose reporting, and clinical outcomes for toxicity or tumor control). From these analyses, the subgroups summarized the dose, volume, and outcome data, and when possible, generated associated models, while at the same time acknowledging the uncertainties. We emphasize and acknowledge that the models used in many of these reports are imperfect (eg, the linear quadratic model is simplistic), but support their use as a tool to try to pool data. Data pooling was often limited by the retrospective nature of much of the published data and by a lack of clarity and inconsistencies/uncertainties regarding critical items such as (1) dose calculation and specification, (2) image segmentation, (3) outcome definitions (for both toxicity and tumor-control), and (4) accounting for competing risks and variable follow-up durations. The HyTEC effort also in-

All data from selected peerreviewed publications

 TCP and NTCP practical guideline tables in Introduction

favored. Further, the NTCP data shown are largely for pa-

tients who have received no prior radiation therapy (RT),

and the entries reflecting situations with prior RT are so

noted. We recognize and emphasize that the data are

imperfect. For many tumor sites, local recurrence is diffi-

cult to establish with certainty by noninvasive imaging

selection for both retrospective analyses and prospective

studies) that collectively may tend to overestimate the true

local control rates across an entire population.

- Published clinical data favored over model results
 - Important for comparing fractionations

	37-1-1-00	Number of		Dose (Gy) or		
Organ	Volume segmented	Number of fractions	Endpoint	dose-volume parameters	Rate (%)*	Notes
Brain; for	Total brain	1	Symptomatic	$V_{12Gy} \le 5 \text{ cm}^3$	10%	From Table 3 and Fig
metastasis	includin g		necrosis			and 5 in paper.
	target	1	Symptomatic	$V_{12Gy} \leq 10 \text{ cm}^3$	15%	Consistent with
		1	necrosis	$V_{12Gy} < 15 \text{ cm}^3$	20%	QUANTEC.
		1	Symptomatic necrosis	$V_{12Gy} \leq 10$ cm	20%	Prior whole brain RT appears to not mark
		3	Edema or	$V_{20Gy} \le 20 \text{ cm}^3$	$\leq 10\%$	increase risks in mo
			necrosis	, _	_	reports (with the
		3	Edema or	$V_{20Gy} \le 30 \text{ cm}^3$	$\leq 20\%$	exception of brain
		5	necrosis Edema or	$V_{MG_V} \le 20 \text{ cm}^3$	< 10%	stem). [†] However, re SRS/fSRS to the sa
		5	necrosis	$V_{24Gy} \leq 20$ cm	$\leq 10\%$	area has been
		5	Edema or	$V_{24Gy} \leq 30 \text{ cm}^3$	< 20%	associated with
			necrosis	2.37		markedly increased
						risks.
Brain; SRS for	Total brain	1	Symptomatic	$V_{12Gy} \le 10 \text{ cm}^3$	$\leq 10\%$	From Figure 2 in pape
arteriovenous	including		necrosis		_	
malformation	target					
Optic pathway	Optic nerves and	1	Neurop athy	$D_{max} < 10-12 \text{ Gy}$	< 1%	From Table 3 in paper
	chiasm	3	Neurop athy	$D_{max} < 20 \text{ Gy}$	< 1%	Consistent with
		5	Neurop athy	$D_{max} < 25 \text{ Gy}$	< 1%	QUANTEC.
						Prior RT exposure of optic pathway (eith
						whole brain RT or S
						fSRS) appears to
						markedly increase
						risks.
Carotid artery	Each carotid	5	Grade 3-5	$D_{max} < 20-30 \text{ Gy}$	< 2-12%	Dose-volume metric
(re-treatment)	artery		bleeding			shown is for the
						reirradiation SBRT
						dose in patients wit prior RT ^{\$}
	Each carotid	5	Grade 3-5	D _{0.5cc} < 20 Gy	- 2,12%	Dose-volume metric
	artery	2	bleeding	D0.5ee< 20 Gy	212%	shown is for the
						reirradiation SBRT
						dose in patients wit
T	Combined lungs	2.5	Coda > 2	Mean dose \leq 8 Gy;	10.156	prior RT
Lungs	Combined lungs minus target	3-5	Grade ≥ 2 toxicity ⁵	Mean dose ≤ 8 Gy; V _{20Gy} < 10-15%	10-15%	Preexisting interstitial lung disease appear
	funtus target		toxicity	¥ 20Gy < 10-1578		increase toxicity ris
Liver; SBRT for	Liver minus	3	$Grade \geq 3$ liver	Mean dose \leq 13 Gy	<20%	For patients with inta
primary lesions	GTVs		enzyme change			liver function. Vari
	Liver minus	6	Grade ≥ 3 liver	Mean dose \leq 18 Gy	<20%	clinical factors (eg,
Liver: SBRT for	GTVs Liver minus	3	en zyme change Grade >3 liver	Mean dose < 15 Gy	<20%	 underlying liver impairment per the
metastases	GTVs	5	enzyme change	Mean dobe 5 15 6)	2070	Child Pugh score,
	Liver minus	6	Grade \geq 3 liver	Mean dose ≤ 20 Gy	<20%	platelet count) can
	GTVs		enzyme change			reduce liver toleran
						Consistent with
						QUANTEC (that
						broadly considered radiation induced 1
						injury; this include
						liver enzyme chang

Lightening Tour of Radiobiological Effects for HyTEC

- A dose is more potent when delivered in fewer fractions
- HyTEC pools data from various fractionations (1- >5)
 - Isoeffective Dose (few fractions) < Dose (many fractions)
 - Isoeffective doses have the same **Biologically Effective Dose** or **BED**
- Many BED models developed over the years
- Widely used: Linear-Quadratic (LQ) model
 - D=total dose, n=# of fractions, α/β = effect-dependent parameter
 - α/β high (≥ 10 Gy) for most TCP, low (≤ 5 Gy) for NTCP
 - BED=D $(1+[D/n]/\alpha/\beta)$
 - EQD2 = isoeffective dose (same α/β) in 2 Gy fractions
 - HyTEC also uses Equivalent Dose in specified # fractions
- Most HyTEC articles use LQ
 - Imperfect but simple
 - A few compare LQ to other models

HyTEC Organ-Specific Paper: Spinal Cord

Spinal Cord Dose Tolerance to Stereotactic Body **Radiation Therapy**

Check for

Arjun Sahgal, MD,* Joe H. Chang, MBChB, PhD,* Lijun Ma, PhD,[†] Lawrence B. Marks, MD,[‡] Michael T. Milano, MD, PhD,[§] Paul Medin, PhD,^{||} Andrzej Niemierko, PhD,[¶] Scott G. Soltys, MD,[#] Wolfgang A. Tomé, PhD,** C. Shun Wong, MD,* Ellen Yorke, PhD,^{††} Jimm Grimm, PhD,^{‡‡} and Andrew Jackson, PhD^{††}

- Endpoint: \geq Grade 3 radiation myelopathy [RM]-highly symptomatic 0
- PubMed search 1/05-1/18; 40 initial hits triaged to 7 de novo studies, 5 re-irradiation •
- No case reports, cauda vs cord or de novo vs reirradiation not separately reported, inadequate followup information
- Due to extreme clinical caution, there are very few RM cases! •

		Dose	Median prescribed dose in Gy (range)/		Median spinal		
Series	No. of patients	reporting structure	number of fractions (range)	Median spinal cord D _{max} , Gy	cord D _{max} EQD2 ₂ , Gy	Median follow-up, mo	No. of cases of RM
Chang 2012 ^{45,*}	131	Thecal sac	Mean EQD2 ₂ 50.7/NS	NS	Mean 48.68 ± 29.97	Mean 23.7	0
Daly 2011 ⁴²	19	Cord	20 (18-30)/1 (1-3)	1 Fx: 22.7 (range, 17.8-30.9); 2 Fx 22.0 (range, 21.3-26.6); 3 Fx: 21.9 (range, 19.7-25.4)	1 Fx: 140.17; 2 Fx: 71.5; 3 Fx: 50.92 [†]	33.7	1
Gerszten 2012 ^{53,*}	26	Cord	Mean 16 (12-24)/ 1 (1-3)	Mean 8.7 (range, 4-11.5)	Mean 23.27 [†]	32	0
Sahgal 2007 ^{54,} *	12	Thecal sac	21 (10-40)/3 (1-5)	20.9 (range, 4.3-23.1)	46.85 [†]	25	0
Sahgal 2009 ^{55,} *	14	Thecal sac	24 (7-40)/3 (1-5)	16.8 (range, 10.7-26)	28 (range, 15-57)	9	0
Sahgal 2013 ^{33,*,‡}	66	Thecal sac	NS / (1-5)	NS	35.69	15	0
Katsoulakis 2017 ³⁴	228	Cord	24 (18-24) / 1	13.85 (range, 9.61-15.21)	54.88 (range, 27.89-65.44)	15	2

radiation myelopathy; SBRT = stereotactic body radiation therapy

* The results from only the patients who met the inclusion criteria are reported in uns row (instead of the run conort of patients from the original study)

Table 2 Reirradiation spine SBRT literature that met the inclusion criteria for this review								
Paper	No. of patients	Dose reporting structure	-	escribed dose (range) / of fractions (range)		ian prescribed dose of pri e) / number of fractions (
Chang 201245,*	54	Thecal sac	Mean EQI	02 ₂ 51.1 / NS	NS			
Gwak 200544,*	3	Cord	33 (21-35)	Gy / 3	50.4 Gy (3	0-50.4) Gy/ 28 (10-28)		
Sahgal 2009 ^{55,*}	25	Thecal sac	24 (8-30) 0	Gy / 3 (1-5)	36 Gy / 14			
Sahgal 201243,*,‡	14	Thecal sac	24 (10-30)	Gy / 3 (1-5)	$EQD2_2 =$	39.8 (29.0-64.5)		
Thibault 201535.8	16	Cord PRV (+1.5 mm)	30 (20-35)	Gy / 4 (2-5)	SBRT 24 (20-35)/ 2 (1-5)		
Thibault 2015 ^{35,§}	24	Cord PRV (+1.5 mm)	30 (24-35)	Gy / 4 (2-5)	cEBRT: 22	.5 (20-30); SBRT 24 (20	-30)/ 2 (2-5)	
Median spinal		Median spinal cord		Median cumulative sp		Median	No. cases	
cord D _{max} , Gy]	D _{max} EQD2 ₂ for SBRT,	Gy	D _{max} EQD2 ₂ of all 1	RT, Gy	follow-up, mo	of RM	
NS	1	Mean 46.19 ± 35.21		Mean 83.37		Mean 21.8	0	
24.1 (19.9-32.9)		60.45		NS		24	1	
12.8 (5.4-27)		18 (10-49)		41.5		7	0	
NS		12.5 (1.9-58.7)		52.4 (39.1-111.2)		12	0	
NS		21.9 (12.4-25.0)		51.3		6.8	0	
NS	1	21.9 (17.5-26.7)		73.9		6.8	0	

Much more data needed for reirradiation

[†] Cumulative EQD2₂ estimated using summary data presented in paper. [‡] The data presented are the controls, not the cases of radiation myelopathy

Challenges defining anatomic Volumes

Spinal canal? Thecal sac? Spinal cord seen in myelogram or MRI? Spinal cord with PRV margin ?

Larger structures may be safer but they penalize paraspinal target coverage

'Whichever approach is used clinically for segmenting the spinal cord, the clinician should be mindful of how past studies have reported spinal cord doses and to what structure the doses were being reported.'

From Figure 1

Sahgal Model

- Thecal Sac
- $\alpha/\beta=2$ Gy, 1-5 fraction cases
- 9 Grade 4 RMs from collaborating group + 66 no-RM controls
- Conservative
- Single fraction Thecal Sac Dmax ≤ 12.4 Gy for predicted RM<1-5%

Katsoulakis-Gibbs (K-G) Model

- Spinal cord
- $\alpha/\beta=3$ Gy K: 259 single-fraction G: 19 cases, BED($\alpha/\beta=3$ Gy)
- K: 2 RMs G: 1 RM
- Single fraction cord Dmax ≤ 14 Gy for predicted RM<1-5%

Comparison with other published data

".....steep increases in risk above single fraction Dmax of 15 Gy"

HyTEC Introduction NTCP Table

Volume Number of fractions Dose (Gy) or dose-volume parameters Dose (Gy) or Rate (%)* Organ segmented fractions Endpoint parameters Rate (%)* Notes Spinal cord Spinal cord, 1 Myelopathy D _{max} < 12.4-14 Gy 1-5% These data are for patients	Table 2 Summary of NTCP ⁶ estimates after SRS/SBRT from the HyTEC reports*								
	Organ			Endpoint	dose-volume	Rate (%)*	Notes		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		canal, or thecal sac ^{‡‡}	4 5		$\begin{array}{l} D_{max} < 17\text{-}19.3 \ \text{Gy} \\ D_{max} < 20.3\text{-}23.1 \ \text{Gy} \\ D_{max} < 23\text{-}26.2 \ \text{Gy} \\ D_{max} < 25.3\text{-}28.8 \ \text{Gy} \end{array}$	1-5% 1-5% 1-5% 1-5%	without prior RT (from Table 3 in paper). Information for the setting of re-irradiation are in Table 4 of the paper. Consistent with QUANTEC.		

¹¹ A range of doses and complication rates are reported, reflecting the heterogeneity and uncertainty in the data. The spinal cord, canal, and the thecal sac have each been used in different models of radiation myelopathy.

Consistent with other expert Dmax

Table 3 Spinal	Table 3 Spinal cord and thecal sac D _{max} values recommended in previous publications compared with model-derived limits								
		xpert-based tions for D _{max}	Model-based limits						
	AAPM TG1015	Kim et al 2017 ⁵⁶	Sahgal 2013*	Katsoulakis-Gibbs model*	Approximate				
			LQ, $\alpha/\beta = 2$ Gy	LQ, $\alpha/\beta = 2$ Gy	Risk				
No. fractions	Gy	Gy	Gy	Gy	of RM, %				
1	14	14	12.4	14	1-5				
2		18.3	17	19.3	1-5				
3	21.9	22.5	20,3	23.1	1-5				
4		25.6	23	26.2	1-5				
5	30	28	25.3	28.8	1-5				

Abbreviations: AAPM TG101 = American Association of Physicists in Medicine Task Group 101; $CT = computed tomography; D_{max} = maximum dose; LQ = linear quadratic; MRI = magnetic resonance imaging; RM = radiation myelopathy.$

* The spinal cord itself (from CT myelogram or MRI) was used as the dose reporting structure by Katsoulakis et al³⁴ and Gibbs et al,³⁶ and the thecal sac was used as a surrogate structure for the spinal cord by Sahgal et al.³³ Numbers in italics denote LQ-based extrapolations from the single-fraction limit. Note that because of the uncertainties involved, the decimal place may not be meaningful, and an approximately equivalent set of median rounded limits from the recommendations/models would be 14, 18, 22, 26, and 28 Gy for 1 to 5 fractions, respectively.

"It is up to individual physicians to determine their own practice and what limits they wish to apply; all of these tolerance limits are suggestions and are not absolute. There are significant limitations to the data that cannot be overcome unless large, prospective, multi-institutional cooperative registries of dose tolerance thresholds are created and modelled."

Now onward:

- **Dr. Anand Mahadevan**: An in-depth look at the HyTEC process with pancreas TCP as the example.
- **Dr. Andrew Jackson**: A physicist's and modeler's perspective on how HyTEC used data from outcomes publications and suggestions as to how future studies can be made more informative.
- Dr. Larry Marks: A radiation oncologist's perspective on HyTEC and the future.

