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Topics du Jour

e Historical Evolution
e Monte Carlo Simulation
* Convolution-Superposition

e Boltzmann Transport
* Phase Space
* Divergence Theorem

e Summary




First Giant Leap: Splitting of Primary and Secondary Dose

Second Giant Leap: CT Tissue Densitometry
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Algorithm Evolution
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Topics du Jour

 Monte Carlo Simulation
* Convolution-Superposition

* Boltzmann Transport
 Phase Space
* Divergence Theorem

e SumMmmary




First EGS (Electron Gamma Shower) Course (1986)
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Biased Random Walks of Individual Particles
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 Geometry of beams and patient (CT)
* Media (Z,p) and interaction x-sections
* Trusted Random Numbers

* Many events (> 10°%9 “histories”)
 Fluences, Dose can be scored

* Particle Tagging (family tree)
* Average * Statistical Variance (Noise)
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Dose Accuracy
Fewer assumptions
Less statistical noise
More particle histories
Big Field Size

Large Patient

High Spatial Resolution

Slow Computer Hardware

Long Computation

Figure 7.16: IMRT dose distributions for a prostate case (top panels) and head and
neck case (bottom panels). These were calculated in about 10 seconds for 1% preci-
sion using PhiMC Monte Carlo code on a multi-core CPU (XeonV3). Reproduced
under a creative commons license (https://creativecommons.org/licenses/by/3.0/)
(Ziegenhein et al. 2015).
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e Convolution-Superposition

* Boltzmann Transport
 Phase Space
* Divergence Theorem
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An Elocution on
the Evolution of
the Convolution
Revolution




Impulse = primary photon interactions
Response = spray of secondary energy

189 Mackie, Scrimger, and Battista: Convolution method for 15-MV
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FiG. 1. Schematic representation of the generation of a primary dose spread
Array.
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3D Superposition in Lung
Spatially-Variable Kernels
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Collapsed Cone Convolution (CCC)

Smart Assumption and Recursive Relations
[M cones x N3] vs N’ Operations
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Topics du Jour

* Boltzmann Transport
* Phase Space
* Divergence Theorem

e Summary




First Boltzmann Course (1887)
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Ludwig Boltzmann (centre) and his colleagues in 1887. Boltzmann was an
Austrian physicist who established the foundation of statistical mechanics with

emphasis on the kinetic theory of gas molecules. In Chapter 6, the same principles

are applied to the transport of megavoltage x-rays and secondary electrons.
Photo courtesy of Universitat Graz.




Introduction to

Phase Space Radiation particles are

triaged into “phase space”
bins with 6D tags:

7(x,y,2),0(6, ), E

"Ensemble” of cohort
» N ordinate System particles emerging from dV
& I ___ > at 7 with similar phase tags

At observation time, t:

Particle Location 7(x, y, z)

Trajectory Direction (8, ¢)

dQ is solid angle cone
wrapped around (6, ¢)

dA is the area vector,
normal to surface

Lab Coordinate System




Net Flow of Radiation Particles

7 (#,Q,E,t) - current density distribution
at 7 as a function of direction, and
energy, at time, t.

By Chetvorno - Own work, CCO, https://commons.wikimedia.org/w/index.php?curid=82880172

The Dot Product of e d4 = j dA cos(0)
discriminates direction of flow across
surface ‘patches’ dA. Net Outflow is:

& 77 QE L) - dA =
[[[V-]#EY dv




Boltzmann Transport Equation
Steady State (Time-Independent); no internal sources

Net Streaming

Gains NET

— X¢(7, E) o(7, ), E) Losses  @ain

x

/clE/ Y (7, Q — Q E' — E)o(7,Q, E)

Fluence density distribution (location, direction, E)
(integrated over an exposure time)

GOAL:
Solve a set of equations for Fluence Distributions (y=»e).
Then Convert to Dose




Particle Bin Accounting

Each ray represents 10 photons
(22, Ea) (Q4, E1)

Phase Bin
Space yming Change
Bin (21, E1)
A +20
(22, E2) In
Scatter

R —10
(23, E3) Out
Scatter

Absorbed

(1, E1)

Divergence (Q21,E1)

€1=50-60=-10 0

Net Gain Inside
€1=20-30=-10

Dose Contributions
— Rout)u + (Rin — Rout)c + ZQ

Dose = (20E2 + 60E1) - (50 E1 + 10E3)

= 10E1 + 20E2 - 10E3 n

= 20(E1) + 10 (E1-E3) + 20 (E2-E1)
= 10E1 + 20E2 - 10E3

OR Electron Energy Deposits




An Overview of Deterministic Radiation
Transport Approaches

Todd Wareing

Y| WANTED A CHANGE FROM A TUXEDD,"
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igure 15. Acuros XB dose field (dose-to-medium) from a 6 MV RapidArc head and neck case. Total dose calculation
ime, including source model and patient transport, on a 2.5 mm voxel grid: 163 seconds (4 degree separation - 89
ontrol points).

Figure 14. Acuros XB dose field (dose-to-medium) for a 6 MV RapidArc lung case. Total dose calculation time,
including source model and patient transport, on a 2.5 mm voxel grid: 86 seconds (4 degree separation - 57
control points).
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Three Generations of Dose Algorithms
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Directly solve differential

LBTE for «

using det i =

. BT Deterministic

numerical methods
Dose

Calculate dose from

L2, E) using (D, ¢)

Linear Boltzmann

Transport Equation

Stochastic
Sampling
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Monte Carlo Convolution
—
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. ) Obtain point dose spread
Indirectly solve integral ! I

LBTE for «
using stochastic
numerical methods

kernel from either
stochastic or
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calculation

E |
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Dose Accuracy

Accuracy & Speed Trade-off

Gen 3
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Monte Carlo
Boltzmann

A Volume
+ Electrons

SAR-TAR

Faster Computers change the Time Scale

Computation Time (minutes)




Monte Carloist
- Slow Starter

Ludwig Boltz
- Strong Closer
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Conclusions

* Algorithms embed assumptions, some are tacit
e Coding of algorithms can vary - unphysical short-cuts
 Assumptions can compensate and hide errors
* Assumptions can fail under different clinical situations

 Beware of “fast & accurate” commercials
 Smart assumptions win the day

 Monte Carlo and Boltzmann yield “Gold Standard” results

* Validation by measurement or computer modeling ?
* Do you trust your dosimeter readings ?
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