

Quantitative Lung Ultrasound Beyond Artifact Imaging

Marie Muller, Ph.D Mechanical and Aerospace Engineering North Carolina State University

THERE IS A NEED TO MONITOR CHRONIC INTERSTITIAL LUNG DISEASES

Pulmonary fibrosis affects 200,000 in the US

Cardiogenic pulmonary edema: congestive heart failure affects 6.2 million Americans

Covid-19 related pneumonia: over 29 million COVID cases in the US

Current modalities have limitations

Chest X-Ray CT scanning Pulmonary function tests

ULTRASOUND COULD BE A HIGHLY ATTRACTIVE ALTERNATIVE

LIMITATIONS OF LUNG CONVENTIONAL ULTRASOUND

Courtesy of L. Demi, Univ. of Trento

Linear probe

LIMITATIONS OF LUNG CONVENTIONAL ULTRASOUND

Courtesy of L. Demi, Univ. of Trento

"B-line artefact is defined as discrete laser-like vertical hyperechoic reverberation artefacts that arise from the pleural line, which extend to the bottom of the screen without fading" Dietrich et al, (2016). Lung B-line artefacts and their use

Evidence that the appearance of B-lines could be frequency-dependent

Dietrich et al, (2016). Lung B-line artefacts and their use. *Journal of thoracic disease*, *8*(6), 1356.

Mento et al (2020). On the influence of imaging parameters on lung ultrasound B-line artifacts, in vitro study. *The Journal of the Acoustical Society of America*, *148*(2), 975-983.

LIMITATIONS OF LUNG CONVENTIONAL ULTRASOUND

Linear probe

Courtesy of L. Demi, Univ. of Trento

 QUALITATIVE
NON-SPECIFIC
 → Not well suited for monitoring

 DEPENDENT ON IMAGING PARAMETERS (Mento et al, JASA 148(2), 2020)

 → WE NEED BIOMARKERS

QUANTITATIVE LUNG ULTRASOUND BIOMARKERS

- → Longitudinal follow up, monitoring of chronic lung diseases
- \rightarrow Monitoring response to treatment
- → Better management of chronic respiratory diseases

HOW CAN THIS BE ACHIEVED?

WHY IS LUNG ULTRASOUND IMAGING ELUSIVE?

WHY IS LUNG ULTRASOUND IMAGING ELUSIVE?

MULTIPLE SCATTERING

No linear relationship between time and distance No imaging!!!

Usually neglected in weakly scattering tissue

ULTRASOUND BIOMARKERS OF INTERSTITIAL LUNG DISEASES

TAKE ADVANTAGE OF MULTIPLE SCATTERING!!!

By leveraging the complexity of wave propagation in highly heterogeneous media

- \rightarrow Extract information on the microstructure
- → CAN MULTIPLE SCATTERING BE A NEW SOURCE OF CONTRAST?

DIFFUSION: RANDOM WALKERS IN A FOREST

DIFFUSION: RANDOM WALKERS IN A FOREST

DIFFUSION CONSTANT D

The higher the diffusion constant, the faster the wave will diffuse in the medium

TRANSPORT MEAN FREE PATH L*

Mean distance at which the wave has lost memory of initial direction

$$D = \frac{V_E \times L^*}{3}$$

ATTENUATION

Relate attenuation to microstructure?

DIFFUSION MEASUREMENT

Per-channel use of ultrasound probe

Inter-element response matrix

DIFFUSION MEASUREMENT

INCOHERENT INTENSITY

Affect the alveolar spatial distribution

QUANTITATIVE BIOMARKERS?

18 In-Vivo Sprague-Dawley Rats

- 6 Pulmonary fibrosis induced using Bleomycin
- 6 Pulmonary edema induced using ischemia-reperfusion injury
- 6 Controls

Euthanized after measurement → MicroCT, Histology, Wet/Dry ratio

- Significant differences between control and fibrosis
- Significant differences between control and edema
- Discriminate fibrosis from edema?

Backscatter Frequency Shift

- Attenuation in fibrosis tissue should differ from attenuation in water
- Spectral power analysis
- Isolate frequencies at which maximum amplitude is observed
- Plot frequency vs depth

2 parameter space

QUANTITATIVE FIBROSIS BIOMARKER? (STAGING)

CT SCORING

CAN WE MAKE THE DIFFUSION MEASUREMENT MORE LOCAL?

\rightarrow IMAGING

CT scan of lung nodule that would be challenging to feel and resect.

VIDEO ASSISTED WEDGE RESECTION

PULMONARY NODULES

By essence, the diffusion process is not local But we can measure the diffusion constant semi locally

- Use sub-arrays of ultrasound probes
- Calculate the incoherent intensity for each sub-IRM

PULMONARY NODULES- PIG LUNG EX VIVO

5 weeks old pig lungs connected to a disposable resuscitator Petroleum Jelly nodule; size : 10 mm ; Depth: 10 mm

Mohanty, K., Blackwell, J., Masuodi, S. B., Ali, M. H., Egan, T., & Muller, M. (2018). Applied Physics Letters, 113(3), 033704.

PULMONARY NODULES- PIG LUNG EX VIVO

- Artificial nodules implanted inside dog/pig lungs.
- Distinguishable amounts of MS in nodule vs. parenchyma.
- Singular Value Decomposition to separate SS and MS contributions + depression detection algorithm

PULMONARY NODULES- PIG LUNG EX VIVO

- 39 out of 40 nodules detected.
- Ultrasound results compared with CT scan values.
- Good estimation of nodule depth. Nodule diameter estimation needs to be improved.

Conclusion

Quantitative characterization of lung parenchyma

- To detect information that wasn't available before
- Sensitive AND specific (EDEMA, FIBROSIS) Differentiate healthy from fibrotic lung and correlates to histology Differentiate healthy from edematous lung
- Use as new source of contrast to detect and localize pulmonary nodules

ACKNOWLEDGEMENTS

Current support

R21CA231503 R21HL154156

W81XWH1810101

Students and collaborators

Tom Egan, UNC E-scopics Kaustav Mohanty Omid Yousefian Yasamin Karbaleisadegh Azadeh Dashti Roshan Roshankhah