

# Combined proton-photon treatments

Jan Unkelbach, Silvia Fabiano, Louise Marc, Nicolas Loizeau

Collaborators: D. Papp (NCSU)

M. Bangert, N. Wahl (DKFZ)

K. Stützer, C. Richter (Oncoray)

T. Lomax, Y. Zhang, F. Amstutz (PSI)



UniversitätsSpita<mark>l</mark> Zürich

# Why combined proton-photon treatments?

#### Photons better in some aspect

- Penumbra (e.g. range shifter)
- RBE issues (OARs in the CTV)
- Robustness (e.g. lung, breast)
- Fixed beam line (limited angles)
  - 1. Combining a fixed proton beam line with photons

#### **Protons are a limited resource**

- Not all patients who may benefit from protons have access to protons
  - ~100 centers
  - >10'000 Linacs
- 2. Can we increase the overall benefit of proton therapy by delivering a subset of fractions with protons?



# **Big Gantries**



# Accelerators are quite compact



for single-room proton-radiation treatment.



Combined treatments with a fixed proton beam line

### **Consider the following treatment room:**

- Robotic couch to treat in lying position
- Standard linac or Cyber knife
- Fixed proton beam line with pencil beam scanning

### Rationale:

- Can fit into a bunker designed for a standard linac
- Lower cost
- If protons alone are suboptimal, photon beams can compensate
- Treatment performed with standard immobilization devices



## Potential application: head & neck cancer

#### Proton beams only in a coronal plane are suboptimal





## Potential application: head & neck cancer

# Horizontal proton beams suboptimal for the parotid

# VMAT delivers a dose bath to the oral cavity

**VMAT** 



#### Protons



UniversitätsSpital Zürich

# Planning method

#### Simultaneous optimization of proton and photon beams

minimize f(d) Objective function for cumulative dose subject to  $d_i = \sum_k D_{ik}^p x_k^p + \sum_j D_{ij}^\gamma x_j^\gamma$ proton dose xray dose  $x_k^p \ge 0 \quad x_j^\gamma \ge 0$  non-negative fluence



### **Optimal combination**

#### Both modalities used







### Cumulative dose

# VMAT contribution

Proton contribution



## **Optimal combination**

#### Protons deliver most of the dose



# VMAT contribution





# Proton contribution

Cumulative dose



UniversitätsSpital Zürich

# Application to breast cancer



**IMRT** only

increased lung/heart dose for concave targets



Protons only  $(45^{\circ} \text{ inclined beam})^{0 \text{ Gy}}$ 

overshoot into the lung



## Application to breast cancer







#### **IMRT** contribution

tangential beams can treat most of the target and improve robustness



#### cumulative dose

Proton contribution

can deliver dose to lymph nodes and parts of the breast



UniversitätsSpital Zürich Combined treatments with a fixed proton beam line

Fixed proton beamlines can more easily be installed in existing hospitals

Potential for wide-spread implementation of protons at lower cost

Main approach to using fixed beamlines: treatment on rotating chair

Here: consider combined proton-photon RT as alternative approach

- Photons improve conformity if protons alone are suboptimal
- A photons component may improve robustness
  - Here: Demonstrated for head & neck and breastOngoing: Evaluate potential across treatment sitesLit: Fabiano 2020, green J



# Why combined proton-photon treatments?

#### Photons better in some aspect

- Penumbra (e.g. range shifter)
- RBE issues (OARs in the CTV)
- Robustness (e.g. lung, breast)
- Fixed beam line (limited angles)
  - 1. Combining a fixed proton beam line with photons

#### **Protons are a limited resource**

- Not all patients who may benefit from protons have access to protons
  - ~100 centers
  - >10'000 Linacs
- 2. Can we increase the overall benefit of proton therapy by delivering a subset of fractions with protons?



# Content

#### Photons better in some aspect

- Penumbra (e.g. range shifter)
- RBE issues (OARs in the CTV)
- Robustness (e.g. lung, breast)
- Fixed beam line (limited angles)
  - 1. Combining fixed proton beam line with photons

#### **Protons are a limited resource**

- Not all patients who may benefit from protons have access to protons
  - ~100 centers
  - >10'000 Linacs
- a) What is the optimal allocation of proton fractions over the patient cohort?
- b) How can a limited number of proton fractions be used optimally



Consider NTCP model-based approach to proton patient selection

- Dutch system, Langendijk et al
- Patients get either protons or photons
- Decide based on NTCP difference

Can we better utilize proton resources through combined treatments? (deliver some fractions with protons and some with photons)

We ask: How many proton fractions should each patient receive? Rather than: Who should receive protons and who not?



#### **Two-fold rationale**

1. Diminishing return on the flat part of the NTCP curve





#### Two-fold rationale

1. Diminishing return on the flat part of the NTCP curve





### Two-fold rationale

1. Diminishing return on the flat part of the NTCP curve



2. Patient selection schemes face a tradeoff between

a) making use of all proton slots, andb) keeping slots available for patient with large benefit



Consider a clinic with

- single room proton machine
- 30-fraction H&N cancer treatments
- 100 patients per year
  - > 2 new patients per week, 12 patients under treatment
- Assume 3 proton slots available each day for H&N patients

#### Goal:

Optimally assign proton fractions to minimize the total number of complications over all H&N patients treated at the department



#### Idea: Daily proton slot re-assignment

- On each treatment day, consider all patients under treatment
- For each patient, calculate the incremental NTCP reduction for delivering today's fraction with protons instead of photons
- Give today's proton fractions to those patients who benefit the most from one additional proton fraction



#### We simulate this process:

- Each day, there is a 40% chance a new patients starts
- Sample IMRT and IMPT mean doses for
  - contralateral parotid
  - oral cavity
  - PCM

from a 6D Gaussian (derived from a plan comparison study)

 Sum of NTCP for xerostomia and dysphagia is calculated (using Dutch models)





# Optimally make use of limited proton fractions



### Lit: Loizeau 2021, red J



# Content

#### Photons better in some aspect

- Penumbra (e.g. range shifter)
- RBE issues (OARs in the CTV)
- Robustness (e.g. lung, breast)
- Fixed beam line (limited angles)
  - 1. Combining fixed proton beam line with photons

#### **Protons are a limited resource**

- Not all patients who may benefit from protons have access to protons
  - ~100 centers
  - >10'000 Linacs
- a) What is the optimal allocation of proton fractions over the patient cohort?
- b) How can a limited number of proton fractions be used optimally



Optimally make use of limited proton fractions

#### For H&N cancer we stay with standard fractionation

- Proton and Photon plans deliver 2 Gy per fraction
- The benefit of combined treatments is not huge

#### Can we better exploit the proton fractions?

- Yes, for tumors eligible for hypofractionation
- E.g. in liver SBRT we may increase the dose for a proton fraction
- But, what if parts of the target volume overlays OARs
- Protons may deliver an overproportionate dose to parts of the target

Lit: Unkelbach 2018, green J; Fabiano 2020, red J



## Example: Spinal metastasis with epidural involvement



#### **4 VMAT fractions**

**1 IMPT fraction** 

achieve uniform fractionation near the cauda



0

over-proportionate dose contribution to the remaining target volume



UniversitätsSpital Zürich

cumulative biological dose

# Conclusions

- 1. Combined proton-photon radiotherapy with a fixed beam line may be a concept for cost-effective proton therapy
  - Protons and photons delivered in the same fraction
    Photon improve the dose distribution for a given patient
- 2. Combined proton-photon treatments allow for better utilization of limited proton resources
  - Protons and photons delivered in separate fractions
     Maximize the benefit of protons for the population



## Literature

Fixed proton beamline + IMRT/VMAT Fabiano 2020, green J

Triple modality IMRT/IMPT/MERT optimization Kueng 2021, PMB Joint IMRT/IMPT optimization with homogeneity objectives Gao 2019, PMB

Proton slot allocation for a H&N cohort Loizeau 2021, red J BED-based optimal fractionation in protonphoton liver SBRT ten Eikelder 2019, PMB Joint BED-based optimization of proton and photon fractions Unkelbach 2018, green J Fabiano 2020, red J

