Vendor-specific approaches to B₀ homogeneity testing

Christina Brunnquell, PhD, DABR cbrunn@uw.edu

DEPARTMENT OF RADIOLOGY

What we'll cover

- Homogeneity OVERVIEW
- An introduction to the main METHODS of measuring B₀ homogeneity
- Step-by-step PROCEDURES for B₀ homogeneity measurement on different vendor platforms (1-2 methods per vendor)
- RESOURCES for more information about theory and implementation of different B₀ homogeneity testing methods

Contributors

Joe Och
Mike O'Shea
Dave Jordan
Trevor Andrews
Travis Salzillo
Sam Fielden

Dustin Ragan
Chad Dillon
Mike Tressler
Kathryn Huff
Jessica Saunders

B_0 inhomogeneity (ΔB_0)

Measure of static magnetic field strength uniformity

- Influenced by
 - Magnet design & manufacturing
 - External ferromagnetic structures
 - Shim compensation
 - > Phantom or patient in magnet

Influences

- Chemical shift techniques: fat suppression (SPIR, SPAIR)
- Spectroscopy techniques
- Geometric distortion
- Signal uniformity
- Banding artifacts

B_0 inhomogeneity (ΔB_0)

- Measure of static magnetic field strength uniformity
 - Variation over a specified volume (DSV)
 - > Expressed in ppm or Hz
 - RMS measurement of B₀ inhomogeneity is volume-averaged
 - Peak-to-peak requires a spatial measurement of variations

Spectral peak

Notes

- + quick and simple
- no spatial information
- Global measure: $B_{0,rms}$ only, not $B_{0,pp}$
- DSV determined by phantom

$$\Delta B_{0,rms} (ppm) = \frac{FWHM (Hz)}{\gamma \left(\frac{MHz}{T}\right) \times B_0(T)}$$

$$\gamma = 42.56 MHz/T$$

Phase difference & phase map

Ridgway JP. J Cardivasc Magn Reson 2010. 12(1):71.

$$\Delta \varphi_{pp} = \frac{ROI_{max} - ROI_{min}}{DR_{ADC}} \qquad \Delta \varphi_{rms} = \frac{\sqrt{ROI_{mean}^2 + ROI_{stdev}^2}}{DR_{ADC}}$$

$$\Delta B_0 \ (ppm) = \frac{\Delta \varphi}{\gamma B_0 \times \Delta TE}$$

Phase difference & phase map

Notes

- can perform in 3D (or 3 orthogonal planes)
- includes spatial information
- phase image accessibility
- phase wraps
- analysis on scanner can be difficult
- $B_{0,rms}$ or $B_{0,pp}$
- DSV determined by ROI (user-selectable within phantom)
- A single phase map can also be used to estimate upper bound of ΔB₀

ACR 2015 MRI Quality Control Manual

Field map

- If available, this is a straightforward vendor-provided capability
- 3D map acquired or created from 2D maps
- Comparable results to phase difference mapping

Field Term	Value			
	Value	Min	Max	Unit
Врр	1.600	0.000	3.000	ppm
Brms	0.090	0.000	0.400	ppm
A10	-0.011	-0.700	0.700	ppm
A11	-0.044	-0.700	0.700	ppm
B11	0.047	-0.700	0.700	ppm
A20	0.080	-0.700	0.700	ppm
A21	0.039	-0:700	0.700	ppm
B21	0.073	-0.700	0.700	ppm
A22	0.044	-0.700	0.700	ppm
B22	0.019	-0.700	0.700	ppm

Bandwidth difference

ACR 2015 MRI Quality Control Manual

$$\Delta B_o (ppm) = \frac{BW_1 \times BW_2 \times (x_1 - x_2)}{\gamma B_0 \times FOV \times (BW_2 - BW_2)}$$
(BW in Hz)

Notes

- + accessible on all platforms
- many acquisitions & measurements for 3D evaluation
- assumes proper gradient calibration
- DSV determined by phantom or internal markers

Procedures by vendor

- Step-by-step instructions/button-ology
- Variation by software version, but this should provide a solid starting point
- Talk to vendor field engineer if you need guidance on your specific system

RESOURCES

GE: LV shim procedure

- Accessible field map function: Large Volume (LV) shim
- Phantom: 45 cm diameter LV shim phantom*
- Coil: body coil

Calibration → Calibration tools → LV shim

- →"Click here to start this tool"
- →Test
- → Scan

*no matter the phantom or procedure, let it rest a few minutes so fluid can settle

GE: LV shim results

GE: Other options

Spectral peak in manual pre-scan

Bandwidth difference

Phase difference

CV rhrcctrl = 3 for magnitude and phase (31 for magnitude, phase, real, imaginary)

Siemens: Phantom shim check procedure

- Accessible field map function: Phantom shim check
 - Requires a service password which is typically easily obtained
- Phantom: 24 cm homogenous sphere
- Coil: Body

RESOURCES

→Hit "Go"

Siemens: Phantom shim check results

Siemens: Other options

BW difference is generally accessible

$$\Delta B_o (ppm) = \frac{BW_1 \times BW_2 \times (x_1 - x_2)}{\gamma \times B_0 \times FOV \times (BW_2 - BW_2)}$$

BW in Hz – multiply Hz/pixel by number of pixels in FE direction

Spectral peak (newer systems)

- After localizer, while setting up another protocol, System→Adjustments→Confirm frequency adjustment
- After pre-scan begins, spectrum displayed
- FWHM displayed or estimate by moving vertical line

Philips: Shim check procedure

- Accessible field map function: Shim check
- Phantom: 40 cm disk
- Coil: Body

Phantom studies → MISC

Run as is. Example 1.5T parameters below				
Sequence	FFE			
TR	400 ms			
TE	16 ms			
FA	30°			
FOV	45 cm			

Philips: Shim check results

- Each B→W transition is 1.0ppm. (1 full cycle is 1.0 ppm)
- Count number N of B \rightarrow W transitions, $\Delta B_{0,pp} = N \times 1.0ppm$
- Re-position phantom and run in 3 planes

RESOURCES

Philips: Other options

Spectral peak

After running non-survey scan Examination → Data Monitoring → F0→Show Latest Zoom in on half of Y Maximum to estimate FWHM.

BW difference

- Older systems display fat-water shift in pixels instead of bandwidth/pixel
- Calculate Hz/pixel:

$$\frac{Hz}{pixel} = \frac{3.5ppm \times \gamma(\frac{MHz}{T}) \times B_0(T)}{fat - water shift (pix)}$$

Phase difference map

- Phase images can be reconstructed also by selecting M (magnitude) and P (phase) on Postproc→Images on the exam card.
- Use image algebra in viewing environment to subtract
- If necessary, reduce TE difference to reduce phase wraps

Field mapping

RESOURCES

SPT tools can be used with a service dongle

Toshiba/Canon: Phase difference procedure

- Phantom: 30 cm spherical
- Coil: Body
- Protocol: FE_AAS

Run in axial plane

Image selector window

Toshiba/Canon: Phase difference results

- Repeat in sagittal and coronal planes
- Field homogeneity (within DSV = ROI diameter) is the absolute max pixel value found in the ROI in any plane

RESOURCES

Absolute pixel value of 100 corresponds to 1 ppm

Hitachi: Fine magnetic field analysis set-up

- Oasis & Echelon
- Phantom: Bottle 11
- Coil: RAPID body (Oasis) or T/R Body (Echelon)
- Protocol: Fine magnetic field analysis tool

RAPID body coil, laterally centered, no pads (required for valid results)

Align laser with phantom landmarks, not coil

Hitachi: Fine magnetic field analysis results

- Hitachi recommends service call if >1.0ppm for Shim On and >5.0 ppm for Shim Off
- ROI placement is automatic – very sensitive to lateral positioning!

Hitachi: SHIM procedure

- AIRIS, Altaire
- Phantom: #4 bottle (AIRIS) or D bottle (Altaire)
- Coil: Head

Axial: TR= 1850, Multi Slice=15, Presat=0, W=11, L=500, Prescan=ON TR= 2430, Multi Slice=15, Presat=4, W=11, L=500, Prescan=ON Sagittal: Coronal: TR= 2430, Multi Slice=15, Presat=4, W=11, L=500, Prescan=ON

RESOURCES

SNR analysis card – place measurement ROIs and record Max and Min for each slice

OVERVIEW

Slice Number	Slice position (mm)	ROI diameter (mm)
1	-70	110
2	-60	134
3	-50	150
4	-40	160
5	-30	170
6	-20	175
7	-10	178
8	0	180
9	10	178
10	20	175
11	30	170
12	40	160
13	50	150
14	60	134
15	70	110

Calculate $\Delta B_{0,pp}$ for each slice:

Airis 2: $\Delta B_0 = 0.114 \text{ ppm * Max(Rel.)} - \text{Min(Rel.)}$ Airis Elite: $\Delta B_0 = 0.104 \text{ ppm * Max(Rel.)} - \text{Min(Rel.)}$ Altaire: $\Delta B_0 = 0.068 \text{ ppm * Max(Rel.)} - \text{Min(Rel.)}$

Determine largest $\Delta B_{0,pp}$ value among all slices from each of three planes and compare to specifications:

Airis 2: $\Delta B_0 \le 1.5 \text{ ppm}$ Airis Elite: $\Delta B_0 \le 1.5 \text{ ppm}$ $\Delta B_0 \le 1.75 \text{ ppm}$ Altaire:

Fonar: Field map procedure

- Accessible field map function
- Phantom: 19 cm soccer ball!
- Coil: 45 inch torso belt coil

Run these in order

Fonar: Field map results

- Echo spacing such that phase wraps are 1.0ppm apart
- Center of volume always scaled to middle of greyscale range

RESOURCES

More Resources: AAPM Report 100

- Details sources and impacts of poor homogeneity
- Overview of 3 measurement methods
- Advantages and disadvantages of each
- Suggested acceptance criteria for routine and ultrafast imaging

AAPM REPORT NO. 100

Acceptance Testing and Quality Assurance Procedures for Magnetic Resonance Imaging Facilities

Report of MR Subcommittee Task Group I

December 2010

https://www.aapm.org/pubs/reports/RPT_100.pdf

More Resources: ACR MRI QC Manual

- ACR-specific requirements for B₀ testing
- General theory behind homogeneity testing
- Detailed vendor agnostic descriptions of 4 measurement methods
- Suggested corrective action

https://www.acr.org/-/media/ACR/NOINDEX/QC-Manuals/MR QCManual.pdf

More Resources

Bandwidth difference method: Chen HH, Boykin RD, Clarke GD, Gao JHT, Roby JW. Routine testing of magnetic field homogeneity on

RESOURCES

clinical MRI systems. *Med Phys* 2006 33(11)

Routine testing of magnetic field homogeneity on clinical MRI systems

Hua-Hsuan Chen, Rex D. Boykin, and Geoffrey D. Clarke^{a)} Department of Radiology, The University of Texas Health Science Center at San Antonio. San Antonio, Texas 78284

Jia-Hong T. Gaob and John W. Roby III Research Imaging Center, University of Texas Health Science Center, San Antonio, Texas 78284

(Received 28 March 2006; revised 21 July 2006; accepted for publication 11 September 2006; published 23 October 2006)

More Resources

 TG325 resources on AAPM website should be live now or soon – likely under "Publications" on AAPM site

- Interactive poster session:
 - Thursday 7/29 3-3:30PM
 - Imaging: MRI Physics and QC
 - Dependence of B₀ homogeneity on field strength and phantom size when measured with four common methods – Travis Salzillo et al