

Next generation synthetic CT for MR-only brain radiotherapy planning

Alex Dresner, PhD. Clinical adoption specialist MR Oncology AAPM 2021

MR-only radiotherapy planning

Experience the true potential and help drive the impact of MRI

MR + CT workflow

MR-only radiotherapy workflow

- Benefit from MRI's superior soft-tissue contrast
- Eliminate tedious and error-prone MR-CT registration
- Lower costs and make MR simulation more affordable
- Simplify workflows and reduce patient burden

MRCAT Pelvis MRCAT Pelvis MRCAT Brain MRCAT Brain MRCAT Prostate + Auto-Contouring

Overview and definitions

PseudoCT = Synthetic CT = MRCAT, but not all versions are created equal

- Voxel-based mapping vs model-based mapping
- Bulk density assignments vs continuous Hounsfield Unit maps
- Edmund & Nyholm, Radiat. Oncol. 12, 28 (2017)
 Of 60 papers on pseudoCT for brain, only 10 had more than 20 patients*
- Accuracy criteria: dose equivalence for therapy planning Johnstone et al., Int J Radiat Oncol Biol Phys. 100(1), 199 (2018)

Philips MRCAT clinical applications Continuous development

FDA, Health Canada and CE approved for clinical use in radiation therapy planning

Literature on Philips MRCAT & its performance

Philips whitepapers

MR-only simulation for radiotherapy planning White paper. Philips MRCAT for prostate dose calculations using only MRI data

4.

7.

technical background of method

Commissioning of **MR-only simulation**

for radiotherapy planning Authors: Gerald Schubert, Teuvo Vaara, Matti Lindström, Reko Kemppainen, and Marieke van Grootel-Rensen

aspects of dose comparison

... or the peer-reviewed publications:

- M. Maspero, P. R. Seevinck, G. Schubert, M. A. U. Hoesl, B. van Asselen, M. A. Viergever, J. J. W. Lagendijk, G. J. Meijer, C. A. T. van den Berg: "Quantification of confounding factors in MRI-based dose calculations as applied to prostate IMRT", Phys. Med. Biol. <u>62(3)</u>, 948-965 (2017)
- 2. N. Tyagi, S. Fontenla, J. Zhang, M. Cloutier, M. Kadbi, J. Mechalakos, M. Zelefsky, J. Deasy and M. Hunt: "Dosimetric and workflow evaluation of first commercial synthetic CT software for clinical use in pelvis", Phys. Med. Biol. <u>62(8)</u>, 2961-2975 (2017)
- R. L. Christiansen, H. R. Jensen, C. Brink: "Magnetic resonance only workflow and validation of dose calculation for radiotherapy of prostate cancer", Acta Oncol. <u>56(6)</u>, 787-791 (2017)
 - R. Kemppainen, S. Suilamo, T. Tuokkola, P. Lindholm, M. H. Deppe, J. Keyrilainen: "Magnetic resonance-only simulation and dose calculation in external beam radiation therapy: a feasibility study for pelvic cancers", Acta Oncol. <u>56(6)</u>, 792-798 (2017)
- N. Tyagi, S. Fontenla, M. Zelefsky, M. Chong-Ton, K. Ostergren, N. Shah, L. Warner, M. Kadbi, J. Mechalakos, M. Hunt: "Clinical workflow for MR-only simulation and planning in prostate", Radiat. Oncol. <u>12(1)</u>, 119 (2017)
- M. Maspero, C. A. T. van den Berg, G. Landry, C. Belka, K. Parodi, P. R. Seevinck, B. W. Raaymakers and C. Kurz: "Feasibility of MR-only proton dose calculations for prostate cancer radiotherapy using a commercial pseudo-CT generation method", Phys. Med. Biol. <u>62(24)</u>, 9159 (2017)
 - R. Kemppainen, T. Vaara, T. Joensuu, and T. Kiljunen: "Accuracy and precision of patient positioning for pelvic MR-only radiation therapy using digitally reconstructed radiographs", Phys. Med. Biol. <u>63(5)</u>, 055009 (2018)

Automatic generation of synthetic CT images MRCAT - Assignment of continuous Hounsfield units

Courtesy: Turku University Hospital, Turku, Finland

Fig. 1. Intensity-based classification using mDixon MRI to generate sCT. (a) water source image (b) fat source image. (c) Water intensity vs. fat intensity scatter plot illustrating the estimated centers of water-rich and fat-rich voxels for linear and continuous soft tissue voxel mapping. (d) Illustration of bone HU classification based on distance from water-fat classification line (MRI: magnetic resonance imaging; sCT: synthetic computed tomography, HU: Hounsfield unit).

Accuracy in dose planning CT-equivalent¹ dose plans

Validation studies have shown that the simulated dose based on MRCAT images does not differ (1Gamma analysis criterion 3%/3mm realized in 99% of voxels within the PTV or exceeding 75% of the maximum dose) in 95% of the pelvic cancer patients when compared with CT-based plan for EBRT

Ingenia MR-RT 1.5T. Courtesy: Turku University Hospital, Turku, Finland. CT() and MRCAT (-----)

MRCAT-based dose distribution

CT-based dose distribution

Dose difference

PHILIPS

80%

70%

Literature validation of MRCAT Pelvis

Methods for commissioning outlined in Turku University Hospital study

			Prostate cancer		Rectal cancer	Gynecological cancer
		Pelvic lymph nodes	Post-operative	Definitive		
		(n=15)	(n=15)	(n=15)	(n=15)	(n=15)
Mean pass rate for a 2%/ 2 mm gamma criterion (%)		98	98	99	96	97
Mean relative dose	PTV 0.0 0.1 0.1 0.1 -0.2 Less than 0.2%	-0.2				
difference between MRCAT and CT (%)				Less than 0.2%		
	OARs			Less than -0.3%		

Kemppainen R, et al. Assessment of dosimetric and positioning accuracy of a magnetic resonance imaging-only solution for external beam radiotherapy of pelvic anatomy. Phys Imag Radiat Oncol 11, 1-8 (2019).

DOI: 10.1002/acm2.13205

RADIATION ONCOLOGY PHYSICS

A multi-institutional analysis of a general pelvis continuous Hounsfield unit synthetic CT software for radiotherapy

Victoria Y. Yu¹ Ijani Keyrilainen² | Sami Suilamo² | Ilyes Beslimane¹ | Alex Dresner³ | Aleksi Halkola³ | Uulke A. Van der Heide⁴ | Neelam Tyagi¹

Yu, V.Y., Keyrilainen, J., Suilamo, S., Beslimane, I., Dresner, A., Halkola, A., Van der Heide, U.A. and Tyagi, N. (2021), A multi-institutional analysis of a general pelvis continuous Hounsfield unit synthetic CT software for radiotherapy. J Appl Clin Med Phys, 22: 207-215. https://doi.org/10.1002/acm2.13205

DOI: 10.1002/acm2.13205

RADIATION ONCOLOGY PHYSICS

WILEY

A multi-institutional analysis of a general pelvis continuous Hounsfield unit synthetic CT software for radiotherapy

Victoria Y. Yu¹ I Jani Keyrilainen² | Sami Suilamo² | Ilyes Beslimane¹ | Alex Dresner³ | Aleksi Halkola³ | Uulke A. Van der Heide⁴ | Neelam Tyagi¹

5 | CONCLUSIONS

MRCAT general pelvis with continuous HU generated realistic sCTs and DRRs to enable MRI-only planning for general pelvis anatomy. Two-stack acquisition enabled geometrically accurate MRI as well as sCT images and allowed anatomic coverage up to L1–L3 vertebrae

MRCAT Brain: Powered by Al

Training

MRCAT Brain algorithm is trained on matched pairs of clinical CT with 1.5T and 3.0T MR datasets from various institutions

MRCAT Brain reconstruction

- Fast computation of attenuation maps directly on the MR console
- Continuous Hounsfield units for CT-like image appearance

MRCAT-based dose plans are robust and as accurate as CT-based plans

The mean dose in the PTV does not differ more than 1% in MRCAT-based plans as compared to CT-based plans for 95% of the patient cases

Training requirement: clinical datasets must represent real-world usage

Contrast agents

Surgical clips

MRCAT

PHILIPS

T1W mDIXON inphase – Post contrast MRCAT

CT

PHILIPS

Goal: MRCAT as primary imaging modality

MRCAT images conform to the DICOM CT standard

- For automatic export to treatment planning systems
- Import as primary image dataset for dose calculations and DRR generation

Accurate MR-based patient positioning

- High-resolution MRCAT data can be used for patient positioning at the linac
- Validation studies have shown that MRCAT-based DRRs are within 1 mm accuracy compared to CTbased DRRs for 95% of cases

MultiPlanar Reconstruction (MPR) of in-phase MRCAT source scan Digitally Reconstructed radiogram (DRR)

Example of Prostate MRCAT Commissioning from Turku University Hospital

VARSINAIS-SUOMEN SAIRAANHOITOPIIRI HOSPITAL DISTRICT OF SOUTHWEST FINLAND

MRI-only Planning for Prostate Cancer

- Three-phase Validation Process -

Phase 1 Jan - Sep 2016	Phase 2 Oct 2016 - Feb 2017	Phase 3
CT and MRI acquisition	· CT and MRI acquisition	· MRI acquisition
Image registration	 Image registration 	 Delineation on MRI
Delineation on MRI	 Delineation on MRI 	· Planning on MRI
Planning on CT and MRI	• Planning on MRI and CT	• <u>RT based on MRI plan</u>
Testing & preliminary dose calculation comparisons	 Dosimetric agreement with CT-based plan 	
<u>RT based on CT plan</u>	• <u>RT based on MRI plan</u>	
74 prostate cancer patients 8 months	 62 prostate cancer patients 5 months 	 164 prostate cancer patients 13 months
	 Average difference in PTVmean dose was 0.8% 	

Dr. Jani Keyriläinen ESTRO Satellite Symposium 2018

Results from case studies are not predictive of results in other cases. Results in other cases may vary.

Dose Calculation at Turku

Dee

18

MRCAT Brain in clinical use

Examples with pathology

MRCAT Brain in clinical use

Next generation synthetic CT:

MRCAT Brain is the start of the next generation of synthetic CT

- Based on a single scan under 3 minutes
- Computed on the scanner console
- Continuous Hounsfield Units
- Computed with artificial intelligence
- FDA approved for use in radiation therapy planning
 - Tested for dosimetric accuracy
 - Local commissioning of MRCAT Brain to replace CT can follow published guidelines

