

Helical CTDI_{vol} Challenges Encountered in the Field

- 1. Creating the axial scan
 - Canon/Toshiba convert the helical to S&V
 - \blacktriangleright GE convert the helical to axial
 - Siemens, Philips, United Imaging open a new scan
 - Find an axial (sequence) protocol for adult head or adult abdomen

MPC

6

Helical CTDI_{vol} Challenges Encountered in the Field

- 2. Setting the correct mA
 - Canon/Toshiba no change needed
 - GE undo where GE *helpfully* adjusted the mA to correct for the change in pitch
 - Siemens, Philips, United Imaging calculate the mAs from effective mAs, also calculate mA to enter into the ACR dosimetry spreadsheet

MPC

5

- 4. Setting the beam width
 - ➢ GE − usually no change needed
 - Except! if initial slice width is 3.75 mm, for all but the oldest 4 slice Lightspeed systems, GE changes the beam width to the 10 or 20 mm beam when the 20 or 40 mm beam was used in the IQ scan

9

10

Helical CTDI_{vol} Challenges Encountered in the Field

- 5. Setting the rotation time
 - Canon/Toshiba no change needed
 - GE no change needed
 - Siemens, Philips, United Imaging make sure the rotation time of the new axial CTDI_{vol} scan matches the IQ scan.
 - Except! Siemens sequence scans don't match their

fast rotation helical scan's rotation times.

Helical CTDI_{vol} Challenges Encountered in the Field

6. Selecting the proper SFOV/bowtie filter

- Canon/Toshiba change only if the S SFOV was used for AA, PA IQ scans.
- GE no change needed, assuming you didn't change the SFOV during the IQ scans.

MPC

- 6. Selecting the proper SFOV/bowtie filter
 - Siemens, Philips, United Imaging no change, assuming you selected the head or abdomen sequence protocol appropriately
 - Except! Siemens Definition AS Pediatric Abdomen need to use Adult Abdomen Sequence, then correct the exposure measurements.

13

14

16

Helical CTDI_{vol} Challenges Encountered in the Field

- 7. Setting multiple scans in the same location
 - Canon/Toshiba set movement to 0.0 mm, set start location at 0.0, copy scans 2x to get 3 scans, set wait time, accept the warning.
 - GE set interval to 0.0, set start/end location to bracket
 0.0, set number of images to 3 x images/rotation to get
 3 scans, set inter-scan delay time, accept the warning.

MPC

because my meter won't reset in the unchangeable
 6.0 second cycle time.

- 7. Setting multiple scans in the same location
 - Siemens depends on software version
 - Older: set Feed = 0, set # of scans = 3, set cycle time, accept the warning.
 - Newer: can't set Feed = 0, so must repeat each scan manually three times

19

20

Assumes that the output of Tube B is the same Tube A's is.

MPC

21

22

Helical CTDI_{vol} Challenges Encountered in the Field

- 10. Dealing with dual energy scans
 - Philips two layer detector
 - measure like axial scan
 - United Imaging if they have dual energy, I'm unaware of it.

MPC

Helical	CTDI _{vol} I Is Easier	Dosimetry !
Scoreboard (low	score wins)	
	Helical Steps	s Axial Steps
Canon/Toshiba	6	10 or 11
GE	6	15
Philips	5	19
United Imaging	5	14
Siemens	6	16, 18, 19, 22, or #\$%!

37

38

39

40

Helical CTDI_{vol} Dosimetry It Reduces Potential Errors!

- ➤ All helical scans we can err by:
- 1. Incorrect beam location
- Incorrect Scan Field of View (if the clinical SFOV was adjusted to fit the ACR phantom)

MPC

Helical CTDI _{vol} Dosimetry It Reduces Potential Errors!				
Scoreboard (low score wins)		Potential		
	Helical Errors	Axial Errors		
Canon/Toshiba	2	4		
GE	2	3		
Philips	2	6		
United Imaging	2	6		
Siemens	2	7		
(I'd say those 2 helical errors are either rare or easy to avoid)				
		CONSULTANTS, IN		

Helical CTDIvol Dosimetry It has better reproducibility!

- ➤ What does this mean?
 - Whereas: the overall reproducibility of uncurated exposure measurements in the helical mode is slightly better than curated measurements in the axial mode
 - Whereas: the helical methodology is already acquiring data from 3 to 21 revolutions of the tube (>= axial)

MPC

46

- What does this mean?
 - Whereas: performing 24 helical scans in short succession does cause significant tube heating (a problem primarily with older, wimpier systems)
 - Whereas: performing CTDI_{vol} measurements currently takes 30 to 45 minutes per scanner

MPC

Helical CTDI_{vol} Dosimetry It has better reproducibility!

➤ What does this mean?

- I Propose: Performing only two helical acquisitions (one center, one peripheral) is sufficient to make an acceptably accurate CTDI_{vol} measurement.
 - You can say, I heard it here first!

MPC

49

CT Dosimetry Challenges Encountered in the Field

Summary: for $\mbox{CTDI}_{\rm vol}$ measurements:

- I. Is easier? Winner = Helical
- II. Reduces potential errors? Winner = Helical
- III. Works? I'd call it a Tie
- IV. Is more reproducible? Winner = Helical

50

CT Dosimetry Challenges Encountered in the Field

➤ Questions?

Other than, why haven't we implemented the helical CTDI_{vol} dosimetry methodology yet?

Taufdemberge@mpcphysics.com 920-344-0359

MPC