
REVIEW

The radiology community has had a leading role in ex-
ploring medical applications of artificial intelligence 

(AI), and one of the primary drivers for this is the desire for 
increased accuracy and efficiency in clinical care. Radiolo-
gist responsibilities extend beyond image interpretation. AI 
tools have the potential to improve essential tasks in the 
imaging value chain, from image acquisition to generating 
and disseminating radiology reports (1). These applications 
are crucial in current medical environments with increas-
ing workloads, increasing scan complexity, and the need 
to decrease costs and reduce errors (2–4). AI applications 
related to radiologic quality, safety, and workflow improve-
ments can be grouped by their influence on various steps in 
the typical radiology workflow, as follows in their approxi-
mate order of occurrence: study selection and protocoling; 
image acquisition; worklist prioritization; study reporting, 
business applications, and resident education. This qualita-
tive review is a discussion of current research and commer-
cial models regarding these applications within the entire 
imaging chain.

Methods
Studies published from 1980 through 2019 were re-
trieved nonsystematically from academic search engines 
including PubMed, ScienceDirect, and Google Scholar 
by using search terms related to each application of 
interest. Public legal documents were also accessed in-
cluding the Medicare Physician Fee Schedule and Other 
Revisions to Part B, Quality Payment Program require-
ments, and Shared Savings Program requirements. 

Public news sources, such as Becker’s Hospital Review, 
Healthcare Finance, Optum, and Healthcare IT News, 
and vendor lists from meetings of the Radiological So-
ciety of North America and the Society for Imaging In-
formatics in Medicine were used to find any commercial 
efforts in each space. All searches were performed by the 
authors, all of whom are attending radiologists or train-
ees with a research interest in radiology AI.

Study Selection and Protocoling

Automated Study Vetting and Clinical Decision Support
Inappropriate imaging studies are inefficient because 
they expend health care resources, increase payer costs, 
increase patient risk, and delay care (5,6). Inappropriate 
imaging orders may represent up to 10% of ordered ex-
aminations, and not all are caught before the examina-
tion is performed (6–10). Imaging ordering errors have 
multifactorial causes but can include a lack of knowledge 
of appropriate imaging types, over-ordering by providers 
because of constrained resources, erroneous clicks in the 
computerized physician order entry system, and unneces-
sary duplicate examinations if a similar study was already 
performed (eg, chest radiography performed immediately 
after chest CT).

To address concerns regarding inappropriate imaging, 
the Protecting Access to Medicare Act of 2014 requires the 
use of an appropriate use criteria system for any advanced 
diagnostic imaging service. Many automated clinical deci-
sion support systems have been developed to meet these 
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it is typically performed by the radiologist because of their 
domain expertise. This is a time-consuming process, how-
ever. At our institution, approximately 1–2 hours per day in 
each division is spent protocoling studies, totaling 50 hours 
per week across the department, which is the equivalent of 
the workload for one full-time equivalent radiologist. Pro-
tocoling is time-consuming for many reasons, including the 
frequent presence of dozens of protocol options, the need to 
look up information from the EMR, and the lack of intel-
ligent aids within the protocol workflow.

In recent years, NLP has shown good results for automating 
study protocols. For example, Lee (16) automated the selection 
of routine versus tumor or infection protocols for musculoskel-
etal MRI, and Trivedi et al (17) distinguished between musculo-
skeletal studies with and without gadolinium contrast enhance-
ment. Both models achieved overall accuracies of greater than 
90%. Brown and Marotta (18) automated three tasks for brain 
MRI (protocol selection, need for intravenous contrast agent, 
and examination prioritization) and achieved overall accuracies 
between 83% and 88%. More recent work focused on a model 
that functioned beyond a single anatomic region or imaging mo-
dality, achieving a precision of 76%–82% when tested on 18 000 
diverse CT and MRI examinations (19). Overall, we found 
that models with more advanced deep learning approaches had 
higher performance than those with traditional machine learn-
ing techniques.

A limitation of current protocoling model performance is the 
input data to which the model has access. Just as a radiologist 
may access EMR data to correctly protocol an examination, AI 
models also need access to these additional data to maximize their 
performance. This is challenging, however, because these data are 
stored in various locations within the EMR and often within 
free-text clinical notes, the interpretation of which is a difficult 
machine learning challenge. Approaches such as long short-term 
memory networks and bidirectional encoder representations of 
transformers have been used to automatically extract informa-
tion from the EMR and could be leveraged to provide more data 
to a protocoling model (20–23). In the meantime, human in-
the-loop verification of automatically selected protocols is likely 
necessary to ensure patient safety and optimal imaging.

Image Acquisition
Successful interpretation of medical imaging requires proper 
image acquisition. Radiation dose, imaging dimensions, pa-
tient positioning and motion, implanted hardware, and sen-
sor variability affect image quality for interpretation. Machine 
learning techniques in this domain have been shown to reduce 
radiation exposure, decrease scan times, reduce rates of false-
positive findings, and reduce unnecessary repeat imaging while 
maintaining image quality (24).

Dose Reduction
As the use of CT and PET increases worldwide, radiation ex-
posure to patients undergoing frequent examinations is a con-
cern. Radiology departments often must balance radiation dose 
and image quality against the practices of “as low as reasonably 
achievable” to avoid unnecessary radiation exposure (25). The 

requirements, including by vendors that license the American 
College of Radiology ACR Select database (11). Implementa-
tion of clinical decision support systems in the hospital setting 
has resulted in decreased inappropriate imaging and advanced 
imaging overall (12,13). For example, Yan et al (14) reported 
that the yield of CT angiography in detecting pulmonary em-
bolism doubled after implementation of a clinical decision sup-
port system. Doyle et al (15) reported an overall 6% decrease in 
imaging with the use of a clinical decision support system in a 
randomized clinical trial of 3500 health care providers. Exist-
ing systems, however, are not without substantial limitations: 
They are largely based on a branching decision tree structure 
that can be exploited to arrive at the desired examination type. A 
more advanced system that relies on natural language processing 
(NLP) of free-text input and integration of electronic medical 
record (EMR) data could decrease the so-called click fatigue as-
sociated with current systems by allowing more flexible input. 
However, our research did not reveal any advanced NLP-based 
system currently in existence or development.

Study Protocoling
Protocoling is the process of selecting the appropriate se-
quences for an MRI or CT examination to ensure that the 
desired anatomy and abnormalities are adequately captured; 

Abbreviations
AI = artificial intelligence, BI-RADS = Breast Imaging Reporting 
and Data System, BT-RADS = Brain Tumor Reporting and Data 
System, EMR = electronic medical record, LI-RADS = Liver Imag-
ing Reporting and Data System, NLP = natural language process-
ing, TI-RADS = Thyroid Imaging Reporting and Data System

Summary
Many noninterpretive artificial intelligence applications with the 
potential to improve multiple aspects of radiology practice, including 
workflow, efficiency, image acquisition, reporting, billing, and educa-
tion, are either currently available or in development.

Essentials
	n Artificial intelligence (AI) models to improve workflow efficiency 

and safety include automated clinical decision support, study pro-
tocoling, examination scheduling, and worklist prioritization.

	n Models to improve image acquisition focus on patient positioning, 
multimodal image registration, dose reduction, noise reduction, 
and artifact reduction.

	n Models to improve reporting include automatic finding categoriza-
tion using classification systems (eg, Breast Imaging Reporting and 
Data System, Liver Imaging Reporting and Data System), provider 
notification of incidental findings, and closing the loop on patient 
follow-up.

	n Business applications include automated billing and coding, 
obtaining preauthorization, and optimization of performance on 
quality measures to increase reimbursement.

	n Use of AI in resident education is somewhat controversial, but 
AI can be used to help flag high-risk cases for faster review by an 
attending physician, customize teaching files based on residents’ 
needs, and help improve resident reporting.

Keywords
Use of AI in Education, Application Domain, Supervised Learning, 
Safety
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tails of image reconstruction are beyond the scope of this re-
view, but there have been extensive research efforts to use ma-
chine learning techniques to improve image reconstruction 
in CT, MRI, and PET. Examples of targets for improvement 
include noise reduction, artifact suppression, motion com-
pensation, faster image acquisition, and multimodal image 
registration. These goals are often codependent and closely 
related, and it is therefore possible to reduce both radiation 
dose and contrast agent dose with the use of successful image 
reconstruction techniques.

Image quality is often a trade-off between radiation dose in 
CT and scan times for MRI. Filtered back projection (36,37), it-
erative reconstruction (38,39), and newer model-based iterative 
reconstruction techniques function by filtering raw sensor data 
or by considering noise statistics, optics, physics, and scanner 
parameters (38). However, all of these techniques are specific to 
the vendor and can have substantial overhead costs because of 
their long computational time (27).

Early machine learning–based CT reconstruction techniques 
caused over-smoothing, resulting in so-called waxy images (26). 
Since then, several subtypes of convolutional neural networks 
have been developed to denoise CT and MR images without loss 
of technical detail (25,40). One method combines deep learning 
techniques with standard filtered back projection principles to 
produce high-quality images with low noise, even with a 20-fold 
reduction in CT input data (41). Another vendor-agnostic CT 
solution achieved higher spatial resolution than filtered back pro-
jection and model-based iterative reconstruction for processing 
low-dose CT and has been granted U.S. Food and Drug Admin-
istration clearance (ClariCT.AI; ClariPi). A different company 

conventional method to reduce CT radiation dose is to de-
crease tube current but this increases noise and reduces diag-
nostic confidence (26). However, machine learning techniques 
for image reconstruction have recently demonstrated impres-
sive results that provide higher-quality images than traditional 
techniques while maintaining lower radiation doses (27,28). 
These denoising algorithms are discussed in further detail in 
the Image Reconstruction section below.

In PET imaging, radiotracer dose reduction has been targeted 
with models that reconstruct low-dose examinations to appear 
similar to full-dose examinations by using noise-reduction algo-
rithms. One commercial company has been able to use only one 
200th of the standard tracer dose and a reduced scan time of 
up to 75% while achieving image quality comparable to the in-
dustry standard by using encoder-decoder residual deep learning 
networks (25,29,30). Generative adversarial networks have been 
used to reconstruct PET images acquired with 1%–25% of the 
standard radiotracer dose with quality similar to that of normal-
dose PET images (31,32) (Fig 1). 

MRI does not produce ionizing radiation, but researchers 
have explored machine learning techniques to reduce gadolin-
ium-based intravenous contrast agent dosage (33). Gong et al 
(33) used machine learning to achieve a 10-fold reduction in 
gadolinium-based contrast agent administration with no signifi-
cant reduction in image quality or contrast information.

Image Reconstruction
Image reconstruction is fundamental to medical imaging to 
create high-quality diagnostic images while managing cost, 
reconstruction time, and risk to the patient (34,35). The de-

Figure 1:  (A, B) Two examples of low-dose PET (left), ground truth standard-dose PET (middle), and low-dose PET with generative adversarial 
network-synthesized images (right). (Adapted, with permission, from reference 32.)
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is a frequent and repetitive task for radiologists during study 
interpretation. Several permutations of this mathematical 
problem exist because several variables can be considered, in-
cluding modality, region of interest, temporality, dimensional-
ity, and elasticity of tissues (51).

Several techniques for automatic image registration have been 
explored. Section-to-volume registration is a common implemen-
tation in which a two-dimensional image section is registered to an 
existing three-dimensional volume. The primary example of this 
type of application is registration of two-dimensional transrectal 
US with an existing three-dimensional MRI for targeted prostate 
biopsy (52). Cross-modality registration is also performed between 
three-dimensional volumes (eg, registration of a preoperative CT 
or MRI to an intraoperative CT for targeted thermal ablation of 
liver lesions [53] or registration of prostate lesions across CT and 
MRI [54]; Fig 4). Haskins et al (52) published a comprehensive 
list of image registration applications.

Patient Positioning
Radiation dose exposure to different organs depends on pa-
tient positioning within the CT gantry, and an inexperienced 
technologist may inadvertently over- or underexpose the re-
gion of interest because of miscalculations of patient size on 
the basis of the localizer radiograph (55,56). An offset of as 
little as 20 mm can result in significant changes in effective 
organ dose (55,56). Advances in patient positioning include 
a three-dimensional depth-sensing camera that recognizes the 
anatomic landmarks and models that automatically calculate 
the patient’s center, which is used to optimize the patient bed 
position for dose and image quality. This implementation is 
commercially available by one vendor and has been shown to 
be more accurate and less variable than manual positioning by 
technologists (55,57,58).

In mammography, poor positioning can result in missed 
breast cancers or technical recalls (59). Strict adherence to posi-
tioning and technique optimizes breast coverage and diagnostic 
quality while minimizing radiation (59,60). Models to automat-
ically evaluate image quality at the time of acquisition to ensure 
compliance with the Mammography Quality Standards Act and 
Program (61) could reduce technical recalls, and one such solu-
tion is registered with the U.S. Food and Drug Administration 
(Mia IQ; Kheiron Medical Technologies).

has commercialized a deep learning–based CT reconstruction 
product that provides quality similar to that of model-based it-
erative reconstruction but with a three- to fourfold reduction in 
reconstruction time (42,43).

In MRI, longer acquisition times can produce higher image 
quality, but they also increase the risk of motion artifacts (44). 
As a result, several machine learning approaches have targeted 
MRI noise reduction and artifact suppression (44) (Fig 2). Most 
of these applications are in the research phase, although a few 
vendor-agnostic denoising products have been approved by the 
U.S. Food and Drug Administration. These products reduce 
MRI acquisition times by 30%–40% (45,46).

Image Quality Control
Poor image quality can be particularly challenging in MRI 
because of suboptimal scan parameters, artifacts, or inappro-
priate coverage (47). Repeat MRI sequences are required in 
up to 20% of examinations, at a cost to hospitals of up to 
$115 000 per scanner annually (24). Various methods have 
been proposed to automatically assess image quality prospec-
tively or retrospectively.

Prospective image quality control can benefit scan protocols 
with high acquisition times, such as brain MRI (24) or real-
time T2-weighted liver MRI (48). In these cases, models have 
shown value in assessing for nondiagnostic scan quality during 
acquisition so technologists can adjust scan parameters during 
the examination rather than after its completion (24,48). Ret-
rospective image quality control explores techniques to mitigate 
metal artifact, respiratory motion, and banding artifact at MRI. 
Multiple groups have developed models that target noise and 
artifact suppression (44,49,50) (Fig 3).

One company has developed algorithms for image quality 
issues in radiography, US, and conventional angiography (Con-
textVision). They offer products to reduce over- or underexpo-
sure and metal artifact in radiography, suppress noise to improve 
contrast and tissue differentiation at US, and reduce noise and 
motion artifact for improved visibility of stents and catheter tips 
in coronary artery angiography.

Image Registration
Image registration refers to linking the same anatomic region 
together within an examination or across examinations, and it 

Figure 2:  MRI with image aliasing, specifically respiratory artifact and blurring suppression (A) before and (B) after artifact 
reduction. DL = deep learning. (Adapted, with permission, from reference 44.)

http://radiology-ai.rsna.org


Radiology: Artificial Intelligence Volume 4: Number 2—2022  n  radiology-ai.rsna.org� 5

Tadavarthi et al

findings) and detected five new intracranial hemorrhages with a 
reduction in reporting time for these cases from 8.5 hours to 19 
minutes. Multiple similar models exist for detection of intracra-
nial hemorrhage (65,66) and emergency findings at abdominal 
CT (67) and chest CT angiography (68,69).

Typically, AI is used to detect positive findings that require 
emergency intervention (eg, pulmonary embolism, hemorrhage, 
and pneumoperitoneum), but this narrowed focus addresses 
only part of the problem in a resource-limited setting such as 
the emergency department. Prolonged turnaround times for ex-
aminations with negative findings also equate to prolonged turn-
around times for the emergency department, in which staff may 
be awaiting a negative result to discharge a patient (70,71). Neg-
ative results may also be necessary for taking appropriate steps 
in patient care, for example, clearing a noncontrast head CT for 
hemorrhage before a patient can undergo thrombolysis for acute 
stroke. In this scenario, rapid confirmation of the absence of a 
finding is crucial for patient care (72). As of the writing of this re-
view, there is no U.S. Food and Drug Administration–approved 
model for detection of examinations with definitively negative 

Worklist Prioritization
Radiologist worklists are typically populated by examinations 
on the basis of preset criteria, such as body part, modality, pa-
tient location, and priority. However, nonemergency examina-
tions are often mistakenly ordered as emergency examination 
in an effort to expedite imaging, thereby preventing the ra-
diologist from differentiating between routine and emergency 
studies and potentially delaying the interpretation of truly 
emergency cases.

Many AI algorithms have been developed across multiple 
body regions to prioritize examinations with emergent findings 
(62) (Fig 5). These models must be adequately sensitive and 
specific to identify emergency findings while avoiding excessive 
false-positive results. Annarumma et al (63) tested such a system 
to simulate a triage system for retrospective adult chest radio-
graphs, resulting in a theoretical reduction in reporting delay for 
critical studies from 11.2 to 2.7 days. Arbabshirani et al (64) 
prospectively implemented a prioritization system for detec-
tion of intracranial hemorrhage at head CT, which flagged 94 
of 347 routine cases (60 true-positive findings, 34 false-positive 

Figure 3:  Noise suppression of (top) T1- and (bottom) T2-weighted images. Original images (left) and processed images (right). 
(Adapted, with permission, from reference 50.)
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results; however, such models have the potential to substantially 
affect patient care and throughput.

Reporting

Structured Reporting
Integration of AI applications into radiology reporting has the 
potential to increase the clarity, accuracy, and quality of report-
ing and decrease report variability in some situations (73). For 
example, models have been created to improve patient care by 
automatically populating recommendations for follow-up of 
incidental findings (74–77). NLP models have also been devel-
oped as smart assistants. For example, Do et al (78) developed a 
tool that detected when the radiologist was reporting a fracture 

and displayed additional information regarding pertinent clas-
sifications, associated injuries, and further clinical recommen-
dations. Whereas multiple frameworks have been developed to 
convert unstructured findings in reports into structured tem-
plates to improve legibility (79–81), we were unable to find 
any recent system that has been systematically tested for per-
formance or implemented clinically.

Classification Systems
Several classification systems have been developed for fre-
quently encountered lesions, including thyroid (Thyroid Im-
aging Reporting and Data System [TI-RADS]) (82), breast 
(Breast Imaging Reporting and Data System [BI-RADS]) (83), 
liver (Liver Imaging Reporting and Data System [LI-RADS]) 

Figure 4:  Sample image registration between CT and MRI scans shows original CT image with the manual contour in yellow (left), MRI scan 
with manual contour in blue (middle), and colocalized section and contour carried from the CT image to the MRI scan with a good overlap between 
contours (right). (Adapted, with permission, from reference 54.)

Figure 5:  Analytic algorithm of noncontrast head CT examinations for urgent findings. AI = artificial intelligence. (Adapted, with permission, from reference 62.)
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(84), and primary brain malignancies (Brain Tumor Report-
ing and Data System [BT-RADS]) (85). Each of these scor-
ing systems relies on imaging characteristics and change over 
time to guide diagnosis or follow-up management. Many AI 
algorithms have been developed to automate the tasks associ-
ated with these scoring systems, including lesion measurement, 
image segmentation, and comparison with prior images. Some 
systems measure lesions that must first be identified by the ra-
diologist (86–88), whereas others detect candidate lesions and 
their characteristics and predict the likelihood of future cancer 
(89). For example, algorithms have been developed to derive 
BI-RADS scores and breast densities or to highlight lesions 
that are suspected for cancer directly from breast MRI, US, 
or mammography. These algorithms have achieved areas under 
the curve of greater than 0.9 (90–92). For liver lesions, models 
have been created to identify lesions at multisequence imag-
ing and perform sequence coregistration to help measurement 
and interpretation (93,94) or to derive the LI-RADS score di-
rectly from the images, with accuracies ranging from 57% to 
85% (95). In the BT-RADS, NLP algorithms have been able 
to derive BT-RADS classification scores directly from the MRI 
report, achieving F1 scores of up to 0.98 (96).

Machine learning algorithms have been incorporated into the 
data curation process used to update recommendations within 
the classification systems, as in the case of TI-RADS (97). A 
model trained with thyroid US lesions and their respective TI- 
RADS scores was able to improve the specificity of thyroid bi-
opsy from 47% to 65% (ie, decreased biopsy of nonmalignant 
nodules) while maintaining sensitivity (98).

Automatic Notification to Provider of Incidental and 
Emergent Findings
Communication of critical diagnoses is mandated by the Joint 
Commission as a part of National Patient Safety Goal 2, “Im-
proving the Effectiveness of Communication Among Caregiv-
ers” (99). In practice, implementing this trail of communica-
tion is inefficient and can disrupt workflow, contributing to 
burnout among radiologists (100). Communication failure is 

also one of the leading causes of malpractice lawsuits (101). 
Hiring reading room coordinators or medical students to help 
with communication increases work satisfaction among radi-
ologists; however, hiring personnel is costly. Therefore, AI has 
been a topic of interest in automating provider notification 
(62,102–104). A notable implementation of this technology 
was described by Do et al (105), who used AI in outpatient 
oncologic CT images to detect actionable incidental findings 
such as pulmonary embolism, gastrointestinal obstruction, 
hydronephrosis, and pneumothorax, resulting in a median 
1-hour decrease in notification time to referring physicians and 
a 37% improvement in radiologist interpretation time.

Patient Follow-up
Radiologist reporting and recommendations for incidental find-
ings is variable (106), and patient chain management can be chal-
lenging in large, complex health systems, sometimes resulting in 
lack of follow-up care. Many groups have used NLP to identify 
incidental follow-up findings in the radiology report to reduce 
the variability of recommendations or the number of patients for 
whom follow-up recommendations are not suggested or are not 
followed (107–111). Implementation of such systems into the live 
clinical environment remains rare; however, Hammer et al (112) 
implemented a closed-loop system for follow-up of incidental pul-
monary nodules, resulting in a significantly higher rate of appro-
priate follow-up by primary care physicians (P , .001). A sample 
report from such a system is shown in Figure 6.

Business Applications

Billing and Coding
AI applications in business analytics present an opportunity to 
create value and shape radiology practice. A major area of focus 
has been billing and coding because of the combined potential 
effect of increased revenue and decreased errors.

It has been estimated that health care organizations lose be-
tween 3% and 5% of net revenue annually because of insur-
ance claim denials (113,114). In 2010, the National Academy 
of Medicine synthesized one of the most extensive datasets of 
U.S. administrative costs related to billing and insurance, esti-
mating that billing-related costs account for 13% of physician 
care spending and 8.5% of hospital care spending (115,116). 
More than 100 variables contribute to claim denial by insurance 
companies, and although this number is too vast to assess manu-
ally for each report, NLP can automatically ensure that reports 
are billed and coded appropriately (117,118).

Research that uses NLP has shown that incomplete documen-
tation is common for many examinations. For example, docu-
mentation deficiencies have been identified in 9.3%–20.2% of 
abdominal US reports, representing a 2.5%–5.5% loss in profes-
sional reimbursement (119). AI can assist by creating predictive 
classification models for automated procedure coding. A study 
investigating the coding of MRI examinations demonstrated 
that the AI system achieved the same performance as manual 
coding by a technologist and did not require any human inter-
vention (120). Therefore, automated coding techniques may 

Figure 6:  Sample of potential automaton for detection of an incidental pulmo-
nary nodule in the report and appropriate follow-up recommendation generation. 
Exam = examination. Red boxes = portions of report model would use to gener-
ated follow-up recommendation.
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optimize reimbursement, improve workflow efficiency, and as-
sess rejected claims to help reduce future denials (121).

Preauthorization
Lack of clinical documentation from referrals often leads to 
delays in authorization of procedures and imaging. Whereas 
computerized physician order entry was created as a tool to de-
crease errors in ordering and to help with preauthorization, it 
has had variable success depending on the use case and method 
of implementation (122). Even with computerized physician 
order entry, many referrals must be manually reviewed and are 
subject to time-consuming telephone calls to insurance com-
panies. Examples of missing information include incomplete 
patient demographics, outdated or inactive insurance informa-
tion, and incomplete clinical documentation. According to 
a survey of 500 health industry leaders in the United States, 
automation of preauthorization was seen as the AI application 
with the most potential (123).

A substantial amount of these relevant data resides in the ra-
diology information system and EMR, which may contain data 
pertinent to preauthorization such as patient orders, insurance, 
and clinical history that may be amenable to query by using 
NLP techniques. Prior authorization software enables health 
care organizations to identify authorization requirements at the 
time of scheduling by mining the radiology information system 
and EMR, therefore reducing manual administrative burden 
and patient scheduling delays (124).

Value-based Payment Models
Data-driven quality improvement lies at the intersection of new 
value-based payment models and AI. The Quality Payment Pro-
gram arose as part of the Medicare Access and CHIP Reauthori-
zation Act of 2015 and represented the shift to value-based care 
by enumerating a series of value-based paradigms for physician 
reimbursement (125). To understand AI applications within the 
Quality Payment Program, it is important to understand how 
reimbursement processes differ between the two major Quality 
Payment Program pathways—the Merit-based Incentive Pay-
ment System and the alternative payment model (Fig 7).

The Merit-based Incentive Payment System involves a 
100-point score related to quality, cost, interoperability, and im-
provement and results in positive, negative, or neutral adjust-
ments to reimbursements based on physician performance. For 
radiologists, the quality category is the most important, and ap-
proximately 85% of radiologist Merit-based Incentive Payment 
System scores were directly affected by the quality category in 
2019 (126,127). Many quality metrics center on reducing un-
necessary imaging and ensuring appropriate documentation and 
follow-up. AI-based tools may be used to optimize performance 
on quality measures such as carotid artery stenosis measurements 
or appropriate follow-up for incidentally discovered lesions 
(126). Similarly, AI could be used to develop tools to automati-
cally measure and track lesion progression, place information 
into reports, or even search the radiology information system 
and EMR to evaluate inclusion or exclusion criteria for certain 
patients (126).

The alternative payment model pathway has a greater focus 
on population health compared with the Merit-based Incentive 
Payment System, such that tools that improve the health of the 
entire population are specifically incentivized. AI applications 
that reduce cost while maintaining or improving quality are 
especially relevant to alternative payment model pathways and 
encourage team-based accountability within a health care orga-
nization. In 2019, up to 15% of the final alternative payment 
model scores were related to cost (127). Within this context, AI 
that is focused on reducing unnecessary procedures and imag-
ing is especially valuable (eg, models that predict the malignancy 
potential of a lesion to decrease unnecessary follow-up scans or a 
tool that mines the EMR for prior studies to reduce redundant 
imaging) (126). In the future, primary drivers of AI applications 
in radiology business analytics, such as applications in quality 
improvement, will likely continue to correlate with the regula-
tory landscape and payer reimbursement patterns.

Resident Education
There are many potential use cases for AI in radiology edu-
cation. As AI tools become ubiquitous in the daily workflow 
for radiologists, care must be taken to ensure that radiology 
trainees learn adequate interpretation skills and do not rely on 
AI software to locate abnormal findings or assign diagnoses. 
Beyond these potential risks, however, there are many opportu-
nities to improve resident education by using AI tools.

Tajmir and Alkasab (128) list various potential applications of 
AI in radiology education, including selection of trainee cases, im-
proved supervision of residents by attending physicians, analysis of 
report differences between trainees of various levels, and facilita-
tion of lifelong learning. For example, AI algorithms could iden-
tify cases that have educational value based on parameters such as 
common diseases; rare, interesting, or unique findings; complexity; 
and acuity. These cases could be automatically incorporated into 
a trainee’s worklist or into a teaching file for dedicated teaching 
sessions. Conceivably, such a process could be tailored to specific 
residents, thereby creating individualized learning opportunities.

Figure 7:  A comparison of the Merit-based Incentive Payment System (MIPS) 
and the alternative payment model (APM) pathways and possible artificial intel-
ligence (AI) applications under each model. EMR = electronic medical record, RIS 
= radiology information system.
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Receiving feedback from supervising attending physicians is 
an integral part of clinical education; however, a balance must be 
struck between complete trainee autonomy and overbearing su-
pervision. AI could help by silently alerting a supervising radiol-
ogist when a junior resident opens a complex or high-acuity case 
(128). This workflow would allow the resident an opportunity 
to independently review a case while ensuring that an attending 
physician is also aware of the case, thereby maintaining patient 
safety and simultaneously allowing for the effective educational 
growth of residents.

There is also an opportunity for NLP-based applications to 
affect resident education. NLP and AI algorithms may be used 
to compare reporting differences between trainees and nontrain-
ees of various levels (128). Although this is a potentially sensitive 
area, a theoretical use case would demonstrate to junior residents 
how their reporting differs from that of more senior trainees. 
The AI system could then provide suggestions for changes that 
could be made by the junior resident. Care must be taken in 
implementation, however, so trainees do not feel unnecessarily 
“watched over” during interpretation.

AI applications could also facilitate lifelong education by 
incorporating new data and recent updates in imaging guide-
lines into a radiologist’s reporting (128), for example, the 
newest guidelines for incidental pulmonary nodule follow-
up. Such an application could benefit both trainees and at-
tending physicians alike.

Despite these potential benefits, AI must be used judiciously 
in resident training to avoid interfering with development of the 
resident’s skills. Residents must be educated in the appropriate 
use and interpretation of AI results because understanding how 
AI models are developed will better equip them to identify and 
appropriately manage model errors.

Areas of Future Work
A limitation of most machine learning applications for non-
interpretive use cases is the relative lack of exploration of 
clinical effect and generalizability. Most research models de-
scribed herein were developed and validated at a single insti-
tution. There is a vast technical, resource, time, and cost gap 
between developing a well-performing model on the basis 
of retrospective data and implementing the model in a live 
clinical setting at multiple disparate sites. Unlike imaging-
based AI models that work on standardized Digital Imag-
ing and Communications in Medicine imaging, noninter-
pretive models rely on heterogeneous data from multiple 
sources that are complex and varied across institutions. In 
our own institution, more than 80 interconnected software 
products are used in the radiology department and accessing 
data from these software products and integrating models 
into them is complex, requiring the agreement of multiple 
stakeholders. Those who are interested in trying publicly 
available research models at their own institution must be 
prepared to devote the time and personnel for implementa-
tion, even if the software is available free of charge. Com-
panies developing products in this space should understand 
the potential complexity of implementation, which may be 
unique for every customer.

Ordering, imaging, and billing patterns are also diverse 
across institutions and patient populations. To ensure models 
are generalizable, they must be developed and tested by using 
data from multiple sites. For example, brain MRI protocols 
likely differ across institutions. A protocoling model must have 
access to these varied data for training and testing; however, 
these data must be harmonized to a common schema to be 
combined. This increases the complexity, time, and cost of 
model development. The ongoing adoption of standardized 
lexicons and communications standards such as common data 
elements (129) and Fast Healthcare Interoperability Resources 
(130) could help mitigate these issues by reducing variations in 
the input data structure, thereby allowing easier collection of 
multisite data.

There are also some underexplored areas in the radiology 
value chain that could benefit from machine learning applica-
tions. Missed appointments, particularly for MRI examinations, 
represent substantial lost revenue for radiology departments. 
Several studies have described the use of machine learning to 
predict no-shows for hospital and outpatient visits (131–133) 
and outpatient appointment and surgery scheduling (134,135). 
However, this work has not yet been extended to the radiology 
domain. The largest study in this area used a multivariant model 
to show the effect of median income and commute distance on 
missed or canceled appointments, but it did not use more ad-
vanced modeling or any EMR data (136). Another study used 
an XGBoost model only on structured data from the hospital 
radiology information system and appointment system and 
achieved an area under the receiver operating characteristic curve 
of 0.746; however, the model did not include more diagnostic 
information from the EMR (137). NLP and machine learning–
based techniques could be used to process structured and un-
structured data from the EMR to potentially achieve improved 
performance. Intelligent hanging protocols could be trained to 
automatically extract series information and display examina-
tions according to the preferences of a radiologist, saving time 
during interpretation. Intelligent worklist optimization to en-
sure that radiologists read examinations for which they have the 
most experience or efficiency could improve diagnostic quality 
and turnaround times. Additionally, chatbots that interface with 
patients to answer questions or explain report findings could im-
prove health literacy and patient confidence. These are just a few 
of the many potential areas of exploration in the development of 
radiology AI models.

Conclusion
Radiology AI software has become increasingly popular over 
the past several years. Whereas the majority of research and 
commercial software focuses on diagnostic or interpretive ap-
plications, there are large areas of potential improvement in 
upstream workflow, including protocoling, acquisition, recon-
struction, and worklist management, and downstream applica-
tions such as reporting, follow-up, and billing and coding. In 
aggregate, these solutions could have a similar or even larger 
effect than most diagnostic AI software because of their ap-
plicability to a large number of cases and at multiple points in 
the radiology workflow.
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Implications
Practice: Human-centered design (HCD) 
methods can be used to consistently operation-
alize implementation strategies.

Policy: HCD and implementation science (IS), 
when used together, can provide an avenue for 
developing stakeholder engaged policy interven-
tions and implementation strategies.

Research: Integrating HCD and IS is a novel ap-
proach and future research should be aimed at 
understanding which HCD strategies are most 
effective for operationalizing implementation 
strategies and how IS can be used to inform and 
evaluate HCD research.
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INTRODUCTION
The timely, effective adoption and implementa-
tion of evidence-based practices, interventions, 
tools, programs, and policies (hereafter referenced 
as evidence-based practices) is important to im-
prove health care delivery and patient outcomes. 
Implementation science (IS), user-centered design 
(UCD), and human-centered design (HCD) are 
three research approaches that focus on translating 
research evidence into the real world. In their recent 
article titled “A glossary of user-centered design strat-
egies for implementation experts,” Dopp et  al. [1] 
established a precedent for combining IS and UCD 
approaches and offered a new glossary of UCD strat-
egies IS experts could use. In this commentary, we 
build upon this work by combining IS and HCD ap-
proaches and offering a how-to guide for IS experts 
to operationalize implementation strategies using 
HCD methods. Combining IS and HCD approaches 
is novel to health care research and practice, and we 
believe that these complementary approaches can 
be applied together to optimize the integration of 
evidence-based practices within clinical and public 
health settings.

IMPLEMENTATION SCIENCE
IS explores methods to effectively translate evidence-
based care, interventions, and policies into practice 
to improve health [2]. By accounting for context 
and multilevel determinants, researchers and prac-
titioners may better address implementation chal-
lenges for evidence-based practices and maximize 
their potential benefits on population health. The 
field leverages dozens of frameworks, theories, and 
conceptual models [3] to inform IS and uses a var-
iety of measures and study designs [4] to understand 
implementation processes and develop and test 

implementation strategies [5]. More specifically, IS 
theories and frameworks can help (a) identify factors 
that may influence implementation processes or out-
comes, (b) provide guidance for conceptualizing an 
implementation challenge and inform study hypoth-
eses, including how to overcome barriers to imple-
mentation, and (c) select and tailor implementation 
strategies to address delivery gaps.

Implementation strategies promote the integra-
tion of evidence-based practices into public health 
and health care settings. Powell et  al. [6] identi-
fied 73 implementation strategies in their Expert 
Recommendations for Implementing Change study, 
of which many involve stakeholder engagement, 
such as conducting educational meetings, clinical re-
minders, and conducting local needs assessments to 
improve implementation outcomes, such as accept-
ability, adoption, appropriateness, costs, feasibility, 
fidelity, penetration, and sustainability [7]. These 
strategies can be selected to address specific multi-
level barriers to implementation and improve imple-
mentation outcomes, which, in turn, strengthens the 
health impact of evidence-based practices [7]. For ex-
ample, if a needs assessment uncovers low provider 
awareness of an evidence-based practice to improve 
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asthma inhaler adherence, then educational meet-
ings with providers may be an effective implementa-
tion strategy for increasing adoption of this practice. 
Methods for selecting and refining implementation 
strategies for a given context are continuing to be 
developed. Some recommended approaches for 
selecting strategies include conjoint analysis, simu-
lation modeling, intervention mapping, and concept 
mapping, among others [8–10].

In addition to implementation frameworks, out-
comes, and strategies, a broad variety of study de-
signs can be used to study implementation, including 
effectiveness-implementation hybrid designs (which 
includes effectiveness and implementation re-
search aims and data collection); mixed methods 
(integrating qualitative and quantitative methods); 
factorial designs (e.g., sequential multiple assign-
ment randomized implementation trial); two-level 
nested randomized designs; cluster randomized con-
trol trials; crossover designs; and simulation models 
among others [5,11,12]. Taken together, the field has 
utilized a set of research methods to rigorously study 
and evaluate the implementation of evidence-based 
practices into public health and clinical settings.

HUMAN-CENTERED DESIGN
HCD is a repeatable, creative approach to problem-
solving that brings together what is desirable to 
humans with what is technologically feasible and eco-
nomically viable [13]. Dopp et al. [1] offer a glossary 
of USD strategies for IS experts, which focuses on 
the individual for which a solution is designed (e.g., 
patient or practitioner), whereas HCD focuses on the 
individual, those who are around them, and the sys-
tems in which the individual is a part. Dopp et al. [1] 
offered this when comparing HCD to UCD:

The closely related approach of human-centered design 
more explicitly seeks to integrate an innovation into 
human activities and systems by considering indi-
viduals beyond primary users (including those who 
interact indirectly with the innovation, such as clinic 
leaders who oversee implementation, as well as those 
who are unintentionally affected by it, such as family 
members of patients) in the design process.

Given the multiple levels of influence (e.g., patient, 
provider, clinic, organization, and system) that can 
impact successful implementation, IS experts could 
benefit from combining a multilevel, HCD approach 
to operationalizing implementation strategies.

Over the past 30 years, HCD has evolved from di-
verse disciplines, including computer science, visual 
design, and architecture, and has been primarily 
embraced in the private sector [14,15]. However, 
the public sector has started to embrace HCD [16]. 
Recently, public health researchers have started 
to apply HCD approaches and methodologies to 
community-based participatory research projects as 

a way to better understand the experiences of end 
users (i.e., intended beneficiaries) and to codevelop 
health interventions with them [17,18]. For this com-
mentary, the authors rely on the HCD process as de-
fined by IDEO, a leading global design company, 
which has successfully used HCD to create ground-
breaking products like Palm pilots and Oral-B tooth-
brushes [19].

IDEO’s HCD process for problem-solving con-
sists of three distinct phases: the inspiration phase, 
the ideation phase, and the implementation phase 
[13,19]. After identifying a particular problem for 
which a solution is desired, designers’ (i.e., those en-
gaged in HCD) first aim is to build empathy toward 
and draw inspiration from individual users (e.g., pa-
tients, patients’ families, clinicians, and staff) through 
in-depth conversations and experiences in Phase 1 
of HCD [18]. The purpose of this first phase is not 
to arrive at a solution; instead, the goals are to more 
completely understand the intended users, the bar-
riers (i.e., “pain points” in HCD) they have experi-
enced given the problem, and the solutions (i.e., 
“workarounds”) they have found [13]. Second, in the 
ideation phase, designers generate numerous ideas 
for how to solve the problem, informed by the users’ 
thoughts, feelings, and experiences. Third, in the im-
plementation phase, designers quickly prototype (i.e., 
test) the different ideas with users to solicit immediate 
feedback. This is achieved through designing short 
experiments with low-fidelity prototypes. Low-fidelity 
prototypes are simple versions of a solution, often 
paper based, that are quickly produced to test broad 
concepts [13]. Prototyping allows for the recombin-
ation and refinement of these concepts into a solution 
that is desirable, feasible, and viable for a specific set 
of users. These short iteration cycles help to secure 
buy-in by repeatedly engaging collaborators, which 
also allows for a smoother, broader implementation 
of the product or service at the conclusion of the pro-
ject [13,18]. To make HCD more accessible to the 
general public, IDEO’s nonprofit arm, IDEO.org, 
published The Field Guide to Human-Centered Design in 
2015 [13]. This field guide includes HCD mindsets, 
methods, case studies, and resources.

COMBINING HCD AND IS APPROACHES
We typically consider IS when there is an evidence-
based practice with proven efficacy that has not 
yet been effectively implemented in health care 
or community settings. Through IS, researchers 
can develop and test strategies to improve care de-
livery of evidence-based practices [5]. We might 
consider HCD when developing a new interven-
tion. Both fields acknowledge the importance of 
multiple stakeholder perspectives, iterative study 
cycles to optimize outcomes of interest, and consid-
eration of the end users to improve implementation 
in real-world settings. Based on these complemen-
tary strengths, we believe that IS and HCD can be 
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combined to provide “client-centered” approaches 
for implementing health care and public health 
practices, and we offer two ways to conceptualize 
how to integrate the two approaches.

First, we could view HCD as a process that occurs 
toward the beginning of the translational research 
pathway (i.e., discovery), and IS on the distal end 
of the pathway. Indeed, the final phase of HCD 
includes an implementation phase, so there are 
opportunities to integrate these two fields in the 
effort to develop patient-, provider-, and system-
centered implementation strategies across the re-
search continuum. IS frameworks, measures, and 
study designs could play a key role in strength-
ening the rigor of HCD research projects in the 
implementation phase.

Second, we could view HCD as a practical method 
for operationalizing implementation strategies. As 
previously outlined, IS leverages strategies to opti-
mize the delivery of interventions and stakeholder 
engagement is paramount. HCD offers IS a set of 
methods (i.e., activities) to engage with intended 
beneficiaries [13,18,19]. Therefore, HCD may pro-
vide a new approach for selecting, optimizing, and 
operationalizing implementation strategies.

HCD methods may be particularly useful for oper-
ationalizing implementation strategies [6] within four 
of the nine broader implementation strategy categories 
identified by Waltz et al. [20]: use evaluative strategies, 
adapt and tailor to context, develop stakeholder inter-
relationships, and engage consumers. Publications 
have provided guidance on how to select, tailor, and 
specify the 73 implementations strategies [6,9], but 
there is still little guidance for how to execute specific 
implementation strategies; that is—how do researchers 
actually apply these implementation strategies in the 
field? For example, if researchers want to employ 
“involving patients/consumers and family members” 
as an implementation strategy in their research, how 
do they operationalize this implementation strategy? 
Operationalizing implementation strategies through 
the use of low-cost, accessible HCD methods could 
help researchers and practitioners assess which imple-
mentation strategies are most acceptable and feasible, 
as well as how these strategies should be executed. 
Using HCD methods to operationalize implementa-
tion strategies will also provide implementation scien-
tists a shared language with those who practice HCD 
and vice versa. Fig. 1 below summarizes the interrela-
tionship between HCD and IS and illustrates how 
combining these approaches can impact population 
health. In order to further illustrate how HCD can en-
hance IS and how IS can enhance HCD, we present 
the case study below.

CASE STUDY: THE REAL TALK APP
This case study reports the development of a new 
mobile app where the first author and her team used 

HCD as the approach for intervention development 
and implementation. We will report the activities 
completed by the team in the development and 
implementation of the Real Talk app and note (a) 
where HCD methods offered ways to operationalize 
IS strategies and (b) where IS could have enhanced 
this HCD project in identifying determinants of im-
plementation and offering ways to evaluate both ef-
fectiveness and implementation outcomes.

About the Real Talk app
In 2017, the first author and the two other cofounders 
of the technology nonprofit MyHealthEd, Inc., ap-
plied HCD to build and launch the first version of 
their Real Talk app for teenage users aged 13–15 
[24]. To date, the app has more than 15,000 users 
in all 50 states and in more than 125 countries. The 
purpose of the app is to build a community for teens 
around taboo health issues, such as sexual health 
and mental health, and let users know that they are 
not alone. In the app, users can browse, share, and 
react to stories on a variety of topics, as well as con-
nect with high-quality online resources from organ-
izations like amaze.org and TeensHealth.

How HCD can enhance IS
While the MyHealthEd, Inc., team did not apply an 
explicit IS framework through their design work, 
they did apply several implementation strategies, 
including: (a) involve patients/consumers and family; 
(b) conduct cyclical small tests of change; and (c) 
intervene with patients/consumers to enhance up-
take/adherence (Table 1). The team applied these 
implementation strategies by using the Inspiration, 
Ideation, and Implementation methods from IDEO.
org’s field guide [13] as described below. The ex-
amples below illustrate how HCD methods could 
be used to operationalize IS strategies.

Involving patients/consumers and family
In order to operationalize “involving patients/con-
sumers and family” as an implementation strategy, 
the MyHealthEd, Inc., team involved teenagers 
aged 13–15 (intended users) early in the HCD pro-
cess. IDEO.org’s field guide [13] offers a number 
of specific HCD methods (i.e., activities) to involve 
end users that include activities like Card Sorts, 
Conversation Starters, a Guided Tour, or a Resource 
Flow. The team used the field guide’s Card Sort 
method to answer questions regarding where teen-
agers felt most comfortable talking about sex and/or 
relationships. In order to do this, the team created 
cards with the following options: school, home, bus, 
church, friend’s house, and other. Then, the team 
asked the teenagers to rank the cards in terms of 
comfort level. After meeting with teenagers across 
the country and completing the same activity, the 
team quickly realized that teenagers did not want to 
talk about sex and/or relationships in school, so they 
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moved away from thinking that they might imple-
ment their intervention in schools. This, along with 
other insights gained through the formative research 
process, led to a direct-to-consumer approach via a 
native smartphone app rather than a school-based 
approach.

Conduct cyclical small tests of change
As part of the ideation phase, the team then con-
ducted dozens of small cyclical tests of change 
to get feedback from teenagers and other stake-
holders (e.g., parents, health teachers, school ad-
ministrators, and faith leaders) on different features 
and design elements in the app. This HCD phase 
directly relates to the implementation strategy for 
conducting cyclical small tests of change but adds 
a more specific methodology. The Real Talk app’s 
user interface and user experience designers used 
the software InVision to create clickable prototypes 
of the different app screens. Then, the team used 
the IDEO.org’s field guide [13] Rapid Prototyping 
method to share the InVision prototypes with in-
tended users, collect reactions and data, and make 
adjustments. For example, the team heard from in-
tended users that they would prefer to interact with 
sexual health content via stories rather than facts or 
statistics. Teens also wanted the ability to share their 
own stories through the app, so the MyHealthEd, 
Inc., team rapidly tested different versions of the 
story submission experience. One major test com-
pared a form-based study submission experience 

(e.g., users submit their entire story by typing it into 
a box) with a chatbot experience (e.g., users respond 
to prompts from a chatbot to share their stories piece 
by piece). After testing these two options, the team 
found that the majority of their intended users pre-
ferred the more interactive chatbot because it was 
as easy and familiar as text messaging a friend. This 
resulted in building the interactive story submission 
feature rather than the form-based feature.

Intervene with patients/consumers to enhance uptake/
adherence
Prior to implementation and dissemination, the 
MyHealthEd, Inc., team was also very intentional 
about engaging with teenagers to develop strategies 
together to increase uptake (i.e., app downloads) 
and adherence (app usage). Through using the 
Co-Creation Session method from IDEO.org’s field 
guide [13], the team convened a group of teenagers 
to design alongside them by empowering them to 
jointly create and brand the solution. Specifically, 
the team worked with teenagers to name the health 
app. Teenagers came up with the name “Real Talk” 
because it captured the raw or “cringey” nature of the 
stories submitted by other teenage users, but it did 
not overtly signal that the app covers sexual health 
education topics. Teenagers wanted a resource like 
this to be discreet and this insight informed the 
app logo (two generic white chat bubbles without 
signals to sexual health content). Lastly, the team 
held multiple Co-Creation Sessions for teenagers 

Popula�on 
Health 
Impact

Human Centered 
Design

Implementa�on 
Science
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mul
level determinants and to evaluate 
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Fig 1 | How human-centered design and implementation science can lead to public health impact.
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to design and pitch their own sexual health apps. 
Both the drawings and language that the teenagers 
used to pitch their app concepts to other teenagers 
shaped the language and images shown for the app 
as it is advertised in the iTunes App Store. The 
description reads:

Real Talk is a community for teens packed with real 
stories about cringey moments. Browse through 
stories, search for topics that matter most to you, 
and use emojis to share your reactions. You can also 
share your own story directly in the app - it’s as easy 
as texting with a friend. Join thousands of teens who 
already use and love Real Talk. With totally relatable 
stories, you won’t feel as alone as you go through the 
struggles of growing up [24].

Additional language offered by teenagers in 
Co-Creation sessions was used in other marketing 
and outreach materials. Applying this HCD 
Co-Creation Session method led to an app de-
scription that was more teen-friendly than what the 
MyHealthEd, Inc., team initially envisioned before 
collaborating with the teens. The use of this spe-
cific HCD method provided a protocol to inform 
the language used to attract new users of the app. 
In the first year of launching the app, Real Talk was 

downloaded more than 10,000 times by teenagers 
across the globe.

How IS can enhance HCD
While the MyHealthEd, Inc., team considered im-
plementation from the start, they did not employ an 
IS framework or study design. As mentioned earlier, 
IS can enhance HCD by identifying multilevel de-
terminants of implementation and offering more 
rigorous evaluation of an evidence-based practice.

IS frameworks that focus on multilevel determin-
ants of implementation can provide structure to 
studying the implementation of an evidence-based 
practice. HCD largely considers determinants for 
implementation on the individual level in the case 
of Real Talk app from the perspective of teens and 
their families. However, when considering the im-
plementation of an evidence-based practice, it is 
essential to consider the multilevel determinants 
that impact an individual’s use of that practice. 
Investigating multilevel determinants iteratively 
throughout the development and evaluation of the 
Real Talk app could help hone in on the appro-
priate implementation strategies, as well as provide 
a more holistic view of the effectiveness of the prac-
tice. For example, exploration of multilevel deter-
minants for implementing Real Talk outside of 

Table 1 | Implementation strategies and aligned design thinking methods from IDEO.org’s The Field Guide to Human-Centered Design

Implementation 
strategy [6]

Implementation strategy  
description [6]

Human-centered design 
method [13] Real Talk case study example

Involve patients/
consumers 
and family 

Engage or include patients/
consumers and families in 
the implementation effort

Card sort  
Co-creation session  
Conversation starters  
Guided tour  
Resource flow

Card sort: Teenagers sorted cards that  
presented options related to where they 
were most comfortable talking about sex 
and/or relationships, who they were most 
comfortable talking with, and what topics 
interested them the most. Results of these 
card sorts informed the content and mode of 
delivery for the intervention.

Conduct cyclical 
small tests of 
change

Implement changes in a 
cyclical fashion using 
small tests of change 
before taking changes 
systemwide. Tests of 
change benefit from  
systematic measurement, 
and results of the tests of 
change are studied for  
insights on how to do 
better. This process con-
tinues serially over time, 
and refinement is added 
with each cycle.

Rapid prototyping  
Integrate and iterate  
Define success  
Measure and evaluation 

Rapid prototyping: Team members used 
InVision to design multiple versions of a  
feature, like the story submission experience, 
and tested the viability of these options (e.g., 
form vs. chatbot) with potential users. Data 
from these tests were used to make  
decisions. 

Intervene with 
patients/con-
sumers to  
enhance  
update/ 
adherence

Develop strategies with  
patients to encourage and 
problem solve around  
adherence

Co-creation session  
Live prototyping 

Co-creation: Team members hosted co-creation 
sessions with potential users where they 
were given paper with blank iPhone screens 
and were asked to (a) draw their ideal app to 
learn about sex education and (b) pitch their 
app to the other potential users for feedback. 
Team members listened to the pitches and 
used similar language for the iTunes App 
Store description.
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patients and families could prevent disconnects be-
tween the patient and their providers, clinics, retail 
stores, and pharmacists, who also play a role in their 
sexual health. As individuals act within systems, it 
is important to study, act upon, and evaluate across 
multiple levels rather than within a vacuum on the 
individual level. A number of IS frameworks do well 
in systematically providing a multilevel perspective 
on implementation determinants and processes.

Next, IS frameworks, measures, and study designs 
could provide structure for evaluating the effective-
ness and implementation of practices, particularly 
throughout the rapid prototyping and cyclical ex-
periments. In addition to assessing determinants 
of implementation, as mentioned above, IS frame-
works are available to provide structure to the 
evaluation of the implementation of evidence-based 
practices and newly developed innovative solutions 
to improve health [7,23]. Implementation outcomes 
have been outlined by the field and include meas-
ures such as acceptability, appropriateness, feasi-
bility, and costs, among others [7]. Assessing these 
implementation outcomes, as well as effectiveness 
outcomes, is essential for understanding the total 
impact of Real Talk on adolescent sexual health 
outcomes. Hybrid effectiveness-implementation de-
signs allow for more rigorous testing and documen-
tation of rapid prototyping cycles by incorporating 
the exploration of not only effectiveness outcomes 
but also implementation outcomes. For example, 
teenagers could have been randomized to view 
one of three sets of marketing materials each with 
different content. Then, the team could assess the 
implementation outcomes (e.g., acceptability, ap-
propriateness, and download rates) and the effect-
iveness outcomes (e.g., sexual health knowledge) of 
the teenagers and determine which of these three 
sets of marketing materials leads to the strongest out-
comes. These data on implementation outcomes are 
key for optimizing, scaling-up, and implementing 
the intervention in different settings (i.e., scale out) if 
found to be effective and, if not effective, may point 
to reasons why the intervention failed to have the 
intended impact on health.

CONCLUSION
Overall, HCD offers specific methods that can 
readily operationalize implementation strat-
egies to improve the translation of health in-
novations into practice. Using HCD to execute 
implementation strategies provides a set of tools for 
implementation researchers to develop and test im-
plementation strategies associated with health inter-
ventions. Additionally, IS offers specific approaches 
to identifying and analyzing multilevel systems 
and barriers to implementation, as well as rigorous 
study designs that would enhance HCD research 

by providing guidance for how to document and 
evaluate the iterative, cyclical experiments [22,23]. 
By combining the processes and tools from HCD 
and IS, we believe that health care and public health 
researchers can develop a common language to im-
prove implementation outcomes and health out-
comes for patients and communities.
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by providing guidance for how to document and 
evaluate the iterative, cyclical experiments [22,23]. 
By combining the processes and tools from HCD 
and IS, we believe that health care and public health 
researchers can develop a common language to im-
prove implementation outcomes and health out-
comes for patients and communities.
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Abstract

Background: Applications of artificial intelligence (AI) in health care have garnered much attention in recent years, but the
implementation issues posed by AI have not been substantially addressed.

Objective: In this paper, we have focused on machine learning (ML) as a form of AI and have provided a framework for thinking
about use cases of ML in health care. We have structured our discussion of challenges in the implementation of ML in comparison
with other technologies using the framework of Nonadoption, Abandonment, and Challenges to the Scale-Up, Spread, and
Sustainability of Health and Care Technologies (NASSS).

Methods: After providing an overview of AI technology, we describe use cases of ML as falling into the categories of decision
support and automation. We suggest these use cases apply to clinical, operational, and epidemiological tasks and that the primary
function of ML in health care in the near term will be decision support. We then outline unique implementation issues posed by
ML initiatives in the categories addressed by the NASSS framework, specifically including meaningful decision support,
explainability, privacy, consent, algorithmic bias, security, scalability, the role of corporations, and the changing nature of health
care work.

Results: Ultimately, we suggest that the future of ML in health care remains positive but uncertain, as support from patients,
the public, and a wide range of health care stakeholders is necessary to enable its meaningful implementation.

Conclusions: If the implementation science community is to facilitate the adoption of ML in ways that stand to generate
widespread benefits, the issues raised in this paper will require substantial attention in the coming years.

(J Med Internet Res 2019;21(7):e13659) doi: 10.2196/13659
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Introduction

Artificial intelligence (AI) has become a topic of central
importance to the ways in which health care will change in the
coming decades, with recent commentaries addressing potential
transformations in clinical care [1,2], public health [3], and
health system planning [4]. AI is a general purpose technology
(GPT), which means it represents a core set of capabilities that

can be leveraged to perform a wide variety of tasks in different
contexts of application [5]. Understanding the core capabilities
of AI as a GPT, and the ways in which it stands to be
incorporated into health care processes, is essential for the
implementation research community to contribute to promoting
a positive place for AI in the future of health care. We believe
that AI has the potential to substantially reconfigure health care,
with implications that reach beyond enhancing the efficiency
and effectiveness of care delivery. Due to this potential, we
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suggest that implementation science researchers and
practitioners make a commitment to more fully consider the
wider range of issues that relate to its implementation, which
include health system, social, and economic implications of the
deployment of AI in health care settings.

We suggest that the most appropriate language for discussions
of AI in health care is actually to discuss machine learning (ML),
which is the specific subfield of AI that is currently making the
most impact across industries. We then focus on 2 questions
about the deployment of ML in health care. First, how should
ML be understood in terms of its actual use cases in health care?
This question addresses the nature of ML as an implementation
object [6,7] in health-related contexts. We present a basic
framework for thinking about use cases of ML in terms of
decision support versus automation and elaborate clinical,
operational, and epidemiological categories of these use cases.

Second, what are the unique challenges posed by ML that may
require consideration during an implementation initiative? As
opposed to focusing on strategies for the adoption of digital
technologies in general, which has been addressed extensively
in other literature [8-10], we focus on what we understand to
be the most important risks arising from the implementation of
ML in health care. Our discussion of the risks associated with
implementing ML in health care is guided by the work of
Greenhalgh et al in the framework for theorizing and evaluating
Nonadoption, Abandonment, and Challenges to the Scale-Up,
Spread, and Sustainability (NASSS) of health and care
technologies [8].

The NASSS framework is based on the premise that when
considering influences on whether and how a technology is
successfully taken up and used, it is important to keep in mind
that “it is not individual factors that make or break a technology
implementation effort but the dynamic interaction between
them” [8]. The NASSS framework outlines a range of
considerations that are relevant to understanding how a
technology might be adopted across an entire region or health
system, ranging from a focus on the particular health condition
in the clinical scenario to the wider political, regulatory, and
sociocultural system in which it is to be embedded. In our paper,
we examine ML as a GPT that has the potential to apply across
clinical conditions and focus our analysis on elements of the
NASSS framework: the technology, its value propositions, and
the adopters, organizations, and systems into which it might be
introduced. We emphasize the evolutionary nature of ML as a
GPT and explicitly acknowledge that it will continue to develop
and change over the coming years, which is also an important
feature of the NASSS framework. We conclude by advocating
for further research on the risks posed by ML from an
implementation science perspective.

AI has been described in many ways. Using the framing in
Agrawal et al, we emphasize that recent advances in AI can be
best understood as “prediction technology” [11]. Quite simply,
prediction is defined for this purpose as “taking information
you have, often called ‘data’, and using it to generate
information you don’t have” (PM, p. 24). This newly generated
information estimates the true information that is missing,
leading to the potential for people and technology to take actions

that may have otherwise been based on less accurate
information.

Predicting illness episodes that might be experienced in the
future is an obvious application of AI in this sense, but
prediction as we have defined it has many other uses as well.
Examples include an automatic translator predicting the phrases
of Spanish that correspond to a particular set of phrases in
English or a chat bot predicting the most appropriate cluster of
words in response to a given query. These examples might not
represent the very intuitive understanding of prediction that we
have become used to in everyday usage or the way we tend to
think of prediction of health-related events and outcomes in
health care. However, they represent the prediction of
information that we do not have based on information we do
have and point toward the potentially widespread applications
of AI as a GPT.

The phrase “predictive analytics” is very intuitive with regard
to defining AI as a prediction technology, using advanced
computer algorithms to predict health-related events from
existing data in ways that exceed the ability of individual
researchers applying individual analyses [12]. However, AI
opens new opportunities for prediction beyond the familiar
predictive analytics for hospital admissions, length of stay, and
patient survival rates. As a process of filling in missing
information, better and cheaper prediction is already being used
in new areas, from transcribing audio to enhancing security to
informing diagnoses.

At its core, current applications of AI bring statistical modeling,
computer code, and advanced computing power to bear on large
amounts of representative data. In his recent commentary on
the potential of deep learning (a form of AI) to transform health
care, Hinton gave the example of deciding whether a patient
has a particular disease and explained that a common approach
would be to use a simple logistic regression (using data to
predict a binary outcome: the patient has the disease or does
not). However, he suggested that if there are extremely high
numbers of potential influences or predictors of whether the
person has the disease, many of which may interact with one
another, the prediction challenge becomes much more complex.
This is especially the case where we have imperfect knowledge
of the causes and correlates of a particular disease. This example
also pertains only to binary queries specifically about whether
a patient has a single disease, which is different from the typical
reasoning processes involved in differential diagnosis among
clinicians, where multiple confounding, interdependent
outcomes must be considered [13,14].

Specific applications of AI can fall under distinct categories,
with AI serving as an umbrella concept, covering more specific
frameworks. In this paper, we are primarily concerned with the
subdomain of AI referred to as ML in which statistical models
are automatically (or semiautomatically) induced from data
according to some criterion (eg, best expected discriminative
power or maximum likelihood given to training data). This
means that complex statistical models capable of executing
advanced predictions are generated in part by using data to train
the model to achieve a particular goal.
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Often, ML involves supervised methods that categorize data
points, for example, as images of skin cancer or otherwise given
datasets in which all data points (or at least a substantial subset)
are associated with a label, ordinal, or category that is meant to
be predicted or inferred [15]. This process requires datasets that
have the appropriate labels indicating what the data means; in
the example of images of skin cancer, each data point would be
labeled according to its representation of a mass as malignant
or benign or some variation thereof. Given these labels and the
statistical models they help to train, ML can be very effective
at determining the category in which any newly available
individual data point belongs, thereby being useful in the effort
to, for example, identify malignant cancers based on particular
images [16].

Much of the power of modern ML also derives from
unsupervised pattern recognition, in which hidden (or latent)
aspects of the data are automatically identified by the algorithms
and exploited according to the aforementioned criteria.
Unsupervised ML can often identify patterns in the data that
humans do not even think to look for. Often, these hidden
aspects are nonlinear combinations of many parts of the input.

ML can also improve its ability to take actions according to
these induced hidden patterns and particular functions of cost
and reward in a process called reinforcement learning. For
example, ML can dynamically adapt survey questions to more
quickly identify possible diseases [17], dynamically avoid
potential communication breakdowns during speech
conversation in the assessment of dementia [18], and even
recommend treatments directly when using structured
institutional data [19]. As so much health care information can
be represented digitally, the potential of ML to improve health
care practices is profound.

Methods

Use Cases of Machine Learning in Health Care
In the remainder of our paper we refer primarily to ML as
opposed to AI, focusing our analysis on the concrete possibilities
of ML in health care. We can think about use cases of ML in
health care in 2 broad ways. The first is through decision
support, wherein ML algorithms are used to provide some form
of input into human decision making. An example is where an
algorithm is used to provide more accurate predictions of the
outcome of a particular procedure given a particular clinical
presentation. This helps to inform a human decision about
whether a given procedure is the best course of action. The
second is through automation, wherein algorithms are used not
only to predict an output but also to take action to achieve a
particular outcome. An example is the automatic transcribing
of a clinical note when dictated into a computer program,
resulting in a complete note being added to a patient’s record
(technically referred to as Automated Speech Recognition).

These 2 broadly defined categories of use cases can be thought
of as applying to various types of tasks in health care, and we
suggest it is instructive to consider 3 types of tasks as most
relevant for the implementation of ML for health: clinical,
operational, and epidemiological.

Clinical tasks refer to health-related assessment, intervention,
and evaluation, generally performed by qualified health care
providers, for example, determining a differential diagnosis.
Operational tasks are those related to activities that are ancillary
to clinical tasks but necessary or valuable in the delivery of
services, such as generating, storing, and retrieving medical
records. Finally, epidemiological tasks are those related to more
accurately identifying the health needs and outcomes of a set
of people within a given population. An example is the
development of a warning system for disease outbreak. As
epidemiological use cases of ML are related to enhancing the
ability of humans to make decisions in the other categories
described here (clinical or operational), there are no examples
of pure automation for epidemiological tasks that contain an
output other than informing a human decision. Hypothetical
examples of both decision support and automation are given
under each of these categories in Table 1.

This table presents a basic framework for thinking about use
cases of ML in health care as falling into 2 primary categories:
decision support and automation. These use cases apply in
categories of clinical, operational, and epidemiological tasks.
As no examples of pure automation exist for epidemiological
tasks, no example is presented in that cell.

The considerations most pertinent to the implementation of ML
will depend on the particular use case being proposed in a given
implementation initiative, and the categories outlined in Table
1 provide a framework for understanding those use cases. The
NASSS framework and other work in implementation science
for digital health technologies emphasize the importance of
attending to the particular value proposition that a new
technology offers for health care stakeholders [8,9]. The value
proposition of digital technology might be different for different
stakeholder groups, and implementation frameworks direct
attention to the implications of newly introduced technologies
for patients, health care providers, managers, health
policymakers, and others [8,25,26]. The clinical, operational,
and epidemiological task types presented in Table 1 will
correspond to different value propositions for different
stakeholder groups, meaning that specific applications of ML
might preferentially benefit one group over another, for example,
identifying a scheduling process to maximize efficiency in
operating costs might preferentially benefit managers over health
care providers inconvenienced by a new system. Understanding
how value propositions differ for the various stakeholders
implicated in a given implementation of ML is an essential
consideration for successful adoption and use.
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Table 1. Examples of use cases in each category of application.

EpidemiologicalcOperationalbClinicalaType of use case

Warning systems for disease outbreak
[22]

Identifying potential staff scheduling
changes related to forecasted emergency
room volumes [21]

Producing a more accurate prediction of
the likely outcome of a particular inter-
vention [20]

Decision support

N/AdUse of robotics for operational tasks in
dementia care, such as meal delivery [24]

Automatically altering insulin treatment
in response to monitored glucose-insulin
dynamics [23]

Automation

aTasks related to the assessment, intervention, and evaluation of health-related issues and procedures, generally performed by qualified health care
providers.
bTasks related to activities that are ancillary to clinical tasks but necessary or valuable in the delivery of services.
cTasks related to more accurately identifying the health needs and outcomes of people within a given population.
dNot applicable.

The potential value propositions of an ML technology offering
decision support versus one offering automation are very
different and bring along different sorts of implementation
issues. The implementation of decision support systems in health
care that do not include applications of ML have been well
studied and the difficulties include perceived challenges to
autonomy, lack of time, and dissatisfaction with user interfaces
[27,28]. Implementation initiatives involving decision support
applications of ML will need to consider this past work to
develop implementation strategies that more effectively address
known challenges.

Implementation initiatives involving automation are likely to
face some similar and some different challenges. For example,
stakeholder views on the introduction of automated robotics
into a variety of health care settings found a widespread lack
of interest and understanding and fear of the ways in which
work would be disrupted and distributed [29]. Although
automation has existed in health care for decades through
technologies such as heart rate monitors, the question of how
acceptable stakeholders will perceive new forms of automation
to be remains an important issue. This point raises the
overarching issue of the extent of automation that is possible
through applications of ML, linked to speculation about whether
ML will mostly augment or actually replace health care
providers’ work [1,30].

Augmentation and Replacement of Health Care Work
We agree with a growing chorus of health care providers and
researchers who suggest that ML will primarily serve to augment
as opposed to replace the work of humans in the provision of
health care in the near term [31], despite applications of
automation in health care. This is because the role of ML in the
current generation of capabilities functions at the level of the
task, and not at the level of an entire job. Agrawal et al explained
that “the actual implementation of AI is through the development
of tools. The unit of AI tool design is not ‘the job’ or ‘the
occupation’ or the ‘the strategy’, but rather ‘the task’.” (p. 125).
Therefore, for a health care provider to be entirely replaced,
every single task performed by that provider would need to be
automated by an ML tool or handed off to a different human.

The complete automation of the full range of human tasks
involved in providing clinical care is not yet possible; activities
such as making treatment decisions based on a differential

diagnosis that integrates data from laboratory investigation,
visual observation, and patient history are still too complex for
automation. In emphasizing this point, we are suggesting that
although much of the hype about AI (and specifically ML) in
health care has focused on its potential role in automating
processes of health service delivery, it is more likely that
near-term applications of ML will fall under the category of
decision support.

Further comments about prediction tasks and decision tasks will
help to clarify this point. As stated earlier, ML applications
fundamentally perform some form of prediction. The specific
instance of prediction that the application is performing may
be thought of as the prediction task, which may be paired with
a complementary decision task. The decision task is where the
newly generated information is used to select a particular action
in a given context. In applications of ML that function as
decision support, the decision task is performed by a human.
As ML diffuses, an important new challenge for health care
providers is to make choices using the predictions that arise
from decision support applications of ML, involving new forms
of input to clinical thought processes related to risks, benefits,
and previously unrecognized influences on health. The examples
of decision support in Table 1 involve generating better
information to inform human decision making.

In applications of ML that function as automation, both the
prediction task and the decision task are accomplished by
machines. A clear example is self-driving cars. The sensors
surrounding the car enable predictions of the best direction in
which the car should travel. However, it is the selection from
a predetermined set of actions and execution of one action over
another that makes self-driving cars an example of automation
as distinct from one of decision support. ML is not yet
sophisticated enough to complete these selection and execution
functions for many health care tasks, across both clinical and
operational levels.

As prediction tasks become more amenable to being performed
by ML, decision tasks become more valuable [5,32]. This is
because predictions are improved, meaning that decisions can
be made with greater confidence and impact. The enhanced
value of these decisions represents the potential value of ML
as a decision support tool and illustrates the potential breadth
of value propositions that could arise from this technology with
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a wide range of implications for the implementation process.
However, for decision support to be valuable in health care, the
outputs of algorithms must have a clear entryway into the human
decision-making processes that pervade health service delivery.
This points us toward one of a series of important issues raised
from an implementation science perspective on the introduction
of ML in health care settings, which we turn to next.

Results

Unique Considerations for Implementation Science
We have described use cases (and attendant value propositions)
of ML in health care as more likely relating to decision support
and less likely to automation, which begins to illustrate the
implementation object of focus in ML initiatives [6,7]. In many
cases of decision support, the implementation object is actually
not all that different from the statistical tools that are already
used as part of common practice, such as risk prediction. In
cases of automation, there are similarly many examples of
technologies that have already been successfully implemented
in health care settings (such as automatic transcription
mentioned earlier). However, ML as a GPT raises a number of
issues that run across use cases and might be anticipated as
unique in comparison with implementation projects for other
digital technologies.

Best practices of implementation for digital innovations [8,9,33]
will be fundamental to the adoption of ML in health care. Here,
we discuss considerations that might appear in implementation
projects involving ML that may be less likely to appear in
implementation projects involving other digital technologies
and yet stand to have a potentially strong influence on the
success of such projects. We organize this section based on
distinct levels of consideration that are presented in the NASSS
framework that we have not yet addressed [8,26]: health care
providers, patients and the public, health care organizations,
and health policy and systems. Although we consider the
primary considerations of health technology vendors working
on the development of ML application in health care to be
outside the scope of this paper, we acknowledge this is a gap
in the literature that requires attention.

Health Care Providers
Health care providers are those responsible for doing the actual
work of health care delivery and are being increasingly expected
to adopt and use new technologies in health care environments.
We suggest that the core considerations or risks of the
implementation of ML for health care providers will fall into
the categories of meaningful decision support and explainability.

Meaningful Decision Support
For ML to function as decision support in a way that is valuable
to health care stakeholders, the outputs of algorithms must have
a meaningful entryway into decision making. From an
operational or epidemiological perspective, isolated analyses
of risk prediction may help to inform resource allocation and
subsequent analysis decisions fairly simply. However, from a
clinical perspective, algorithms that perform isolated risk
prediction may be less useful. Clinical decision making is a
complex process involving the integration of a variety of data

sources, incorporating both tacit and explicit modes of
intelligence [34-36]. To inform this decision-making process
more intuitively, attention is increasingly being devoted to
communication tools such as data visualization [37]. The nature
and value of these communication tools are central to the
implementation process, helping to determine whether and how
algorithmic outputs are incorporated in everyday routine
practices. This point primarily relates to the decision support
use case across clinical, operational, and epidemiological tasks.

Explainability
There is a growing concern in the AI community related to the
explainability of the results achieved by ML algorithms, wherein
the ways in which algorithms enhance the performance of
prediction can often not be understood [38]. As a result of the
processes described earlier in this paper, the ways in which data
are being used to train algorithms cannot be traced out in
sequential, logical detail. Hence, the actual ways in which
models achieve their results are in some instances not knowable
even to the computer scientists who create them. Evidence-based
medicine rests on a foundation of the highest standards of
explainability; medical decision making aspires to incorporate
a sound understanding of the mechanisms by which diseases
and their treatments function and the particular treatments that
have demonstrated the greatest benefits under particular
experimental circumstances (in addition to patient needs and
values [35,39,40]). The lack of understanding of those
mechanisms and circumstances poses challenges to the
acceptability of ML to health care stakeholders. Although the
issue of explainability relates clearly to decision support uses
cases of ML as explained here, the issue may apply even more
profoundly to automation-focused use cases as they gain
prominence in health care.

Patients and the Public
The issues of public trust and public input into the governance
of ML initiatives in health care have been widely discussed as
the popularity of AI has grown, with advocates suggesting that
future developments of AI ought to be explicitly supporting a
broader public interest. We suggest that 2 pairs of issues frame
the risks of ML related to patients and the public. The first pair
is privacy and consent and the second is representative data and
algorithmic bias.

Privacy and Consent
The training of ML models requires large amounts of data,
which means that applications of ML in health will likely rely
on health-related data from patients and the public. As
governments and other actors internationally become interested
in developing applications of ML, health-related data are
increasingly made available to private entities with the capability
of producing AI applications that are relevant to peoples’health
[41-43]. Currently, data from wearable devices such as smart
watches and mobile apps are not widely covered by health
information legislation [44], and many health-related apps have
unclear consenting processes related to the flow of data
generated through their use [45]. Furthermore, data that are
de-identified may be reidentifiable when linked with other
datasets [46]. These considerations create major risks for
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initiatives that seek to make health data available for use in the
development of ML applications, potentially leading to
substantial resistance from health care providers such as that
seen in primary care in Denmark in recent years [42]. This will
be particularly important for population and public health use
cases that require data from very large segments of the
population. The meaning of consent and strategies to maintain
patient privacy are central considerations to ML implementation
initiatives. The related issues of privacy and consent pertain
especially to clinical and epidemiological use cases of ML in
both decision support and automation categories, as data from
patients /or the public are essential to train algorithms in these
areas (whereas operational use cases may only rely on other
forms of data, such as clinical scheduling histories).

Representative Data and Algorithmic Bias
Algorithms are only as good as the data used to train them. In
cases where training data are partial or incomplete or only reflect
a subset of a given population, the resulting model will only be
relevant to the population of people represented in the dataset
[47]. This raises the question about data provenance [30,48]
and represents a set of issues related to the biases that are built
into algorithms used to inform decision making. One high profile
example was the hiring bias exhibited when algorithms were
used to make hiring decisions at Amazon, resulting in only men
being advanced to subsequent stages of hiring [49]. This is
notable in part because the algorithm performed extremely well
based on the available data, simply extending the bias that
already existed in hiring practices at the company. When applied
to health care of public health, data provenance and potential
bias in training data represent important issues that are likely
to be of major concern for the stakeholders involved in the
implementation of an ML initiative. Public health has health
equity as a primary goal, and representativeness in terms of
which populations can be addressed by an ML initiative will
be a central consideration.

A further challenge with the nature of the data on which
algorithms are trained relates to concept drift, a phenomenon
where data on which an algorithm is trained change over time
(or become out of date), which changes the performance of the
algorithm as new data are acquired [50]. The possibility of
concept drift means that those overseeing the performance of
ML-based technologies in health care must identify strategies
to determine how well the algorithm deals with new data and
whether concept drift is occurring. Applications to support this
effort are emerging in the literature [51].

The issues addressed here apply most clearly to ML applications
that use patient data to inform clinical and epidemiological use
cases that enhance clinical care and health system planning.
And although the use of public data will likely be the most
contentious issue in this domain, the challenges of
representativeness and bias apply to all ML use cases across
decision support and automation domains.

Health Care Organizations
Health care and public health systems are composed of
independent organizations that need to develop and execute
strategies within the limits of the resources available to them.

Organizations have been the driving force behind the adoption
of many innovations in health care and have a collection of
considerations that are unique from the broader systems of
which they are a part. We suggest that the issue of security and
computational resources become particularly important for
organizations as they adopt ML initiatives in health care and
public health.

Security
As data are collated and stored for training ML models, the risk
and potential severity of security breaches grows. The global
attack of health care organizations using WannaCry ransomware
in May 2017 shows the vulnerabilities of even well protected
health data to malicious interests. This particular attack is
estimated to have affected 200,000 systems in over 150
countries, indicating the potential scope of security problems
as the value of data grows [52]. Strategies to prevent such
security breaches on Web accessible health data are now being
proposed in the literature [53,54], and the high profile of security
issues makes this a particularly important issue as ML
applications develop in health care and public health. The issue
of security transcends any particular use case of ML and
includes any applications or analysis that relies on big data more
generally.

Computational Resources
Advanced applications of ML require substantial computing
power, with some predictive analyses and training models
requiring up to several weeks to run. The more extensive the
computing support, the more efficient ML applications will
become, raising the question of the cost and availability of such
advanced computing power for health care organizations. Health
care is publicly funded in many countries around the world, and
public support to secure the resources to fund the necessary
computing power may not be present. Cloud-based analytics
present an opportunity and a challenge for health-related
organizations in relation to the issue of computational resources.
Cloud-based data analysis means that organizations would not
need to own computational resources directly [55] but also
introduces the potential challenges of data safety. These issues
are relevant to the training phase of a newly developed
algorithm, but of course, less computing power is required to
simply apply algorithms that have been generated and trained
elsewhere. How data are stored and processed is thus also an
important consideration in ML implementation initiatives. The
issue of computational resources also applies more generally
than any given ML use case, related to the development and
functioning of many kinds of AI algorithms.

Health Policy and Systems
The challenges associated with ML initiatives at the level of
health policy and systems are extensive. These include broad
legislative frameworks related to emerging health-related
technologies more generally [56] and to the innovation
procurement systems that vary across health system settings
[57,58]. The policy issues presented by ML in health care are
beginning to garner more attention [42,43], but here we present
one issue that we have not seen addressed in health care or
public health literature: the challenge of scalability.
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Scalability and Normal Accidents
A major challenge that extends beyond any single
implementation of ML, and therefore requires a system-wide
view, relates to the scalability of ML. Scalability in this sense
refers to the unanticipated effects of the appearance of multiple
ML technologies that will inevitably interact with one another
by some means. As applications of ML proliferate across health
care and public health, eventually some algorithmic outputs
will confront others. The effects of this interaction are
impossible to predict in advance, in part because the particular
technologies that will interact are unclear and likely not yet
implemented in the course of usual care.

Health care represents what Charles Perrow referred to as a
complex system or a system in which processes are tightly
linked to one another and interact in unintended ways in the
effort to achieve the goals of the system [59]. This
acknowledgement has led to the high reliability movement in
health care and other industries [60], intending to implement
management strategies that could mitigate against the risk of
disasters arising from such immense complexity. Perrow’s work
was titled Normal Accidents: Living with High Risk
Technologies, suggesting that in systems characterized by
complexity and the use of advanced technologies, accidents are
bound to happen [59]. This basic point about the seeming
inevitability of accidents in the context of complex systems and
new technologies underscores the significance of the scalability
challenge of ML in health care. We suggest that implementation
scientists will need to consider the unintended consequences of
the implementation and scale of ML in health care, creating
even more complexity and greater opportunity for risks to the
safety of patients, health care providers, and the general public.
ML safety will likely need to become a dedicated focus of
patient safety research internationally. This point about
scalability frames the broader challenge for implementation
scientists who are committed to a system-wide perspective on
health innovations and relates not only to each type of use case
identified in our framework but also to the interactions between
them as well.

Discussion

Intersecting Issues in the Future of Health Care
In our brief Discussion section, we outline 2 overarching issues
that we consider to frame the challenges facing health care
systems that are hoping to adopt ML in the coming years. The
discussion here is informed by the explicit recognition in the
NASSS framework that both the technology and context in
which innovations are being introduced shift and change over
time. Greenhalgh et al suggest that although the levels of the
framework can be distinguished analytically, “at an empirical
level they are inextricably interlinked and dynamically evolving,
often against a rapidly shifting policy context or continued
evolution of the technology” (p. 14). Our assessment of the 2
issues we address here is intended to represent the connections
between the changes that will be required as the policy context
and technology evolve concurrently. The first is the issue of the
role of corporations in health-related applications of ML, and

the second is the issue of the role of ML in the evolving nature
of health care.

The Role of Corporations
As the innovations enabled by ML have taken on a more
powerful role in driving global economies, corporations have
strategically sought to acquire larger amounts of more diverse
data to boost their capacity to develop ML algorithms [61]. The
shifting focus of many large corporations to the collection and
manipulation of data characterizes what Zuboff refers to as
surveillance capitalism, a relatively recent phenomenon in the
global economy that relies on data for innovation and corporate
success. The more that large corporations enter the health care
industry with the power to collect, store, and use data, the more
intertwined health care will become with the corporate realities
of these large, multinational companies [62].

As large corporations acquire more data and develop more
sophisticated forms of ML that transcend any individual
geographical region, the implications for domestic health care
policy are at risk of being overlooked. Although recent efforts
to create regional protections around data collection and use
have appeared to make an impact, such as the General Data
Protection Regulation in Europe, health care policy is well
behind. In cases where health-related data are already being
stored in a country other than where the user is living, what are
the regulations on how those data can be used? Where users
voluntarily engage with technologies that collect their data for
explicit health-related use by a corporation outside of their
political jurisdiction, what legislative frameworks apply to
protect patients and the public? These issues represent the
important challenge of making health policy matter when
conventional political boundaries are less able to contain the
potential of large corporations to develop and use their
technological capabilities.

The Changing Nature of Artificial
Intelligence–Enabled Health Care
AI applications represent a potential impetus for major change
in the institutions that constitute health care. In this sense, the
term institution refers not just to the organizations in which
health care providers work but to a complex collection of
cognitive, cultural, regulative, and moral influences that shape
the way that health care workers see their work and their lives
[63]. The social sciences have worked to provide clear
definitions of institutions through decades of research and theory
[63-65]. Scott explained that institutions are combinations of 3
pillars: norms of the way things are usually done around here
(cultural-cognitive influences), laws and regulations (regulative
influences), and assumed moral codes (normative influences)
[63]. Health care represents a confluence of institutions
understood in this sense, many of which are naturally oriented
toward maintaining some version of the status quo. Particularly
for members of institutions who maintain power over resources,
such as the medical profession, embracing institutional change
is a point of resistance and difficulty.

We suggest that ML will confront the realities of entrenched
institutions through issues such as meaningful decision support
and explainability described earlier. These 2 issues represent

J Med Internet Res 2019 | vol. 21 | iss. 7 | e13659 | p. 7https://www.jmir.org/2019/7/e13659/
(page number not for citation purposes)

Shaw et alJOURNAL OF MEDICAL INTERNET RESEARCH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


the authority of health care providers over the decisions that
come to define health care as a multi-institutional field, both in
terms of their rightful positions within the system and the fabric
of decision making that has always defined health care
processes. These issues point toward an important challenge
that we suggest implementation scientists must grapple with:
the changing nature of health care work. In Prediction Machines,
the authors explain that as AI technology develops, “the value
of substitutes to prediction machines, namely human prediction,
will decline. However, the value of complements, such as the
human skills associated with data collection, judgment, and
actions, will become more valuable.” (p. 81). As the
implementation science community considers how to encourage
the adoption of ML technologies, it will also need to consider
how such technologies stand to change the ways in which health
care planning, decision making, and delivery are understood
and the evolving role of human health care providers within
that context.

The challenges described here refer to unique considerations of
ML that pose novel challenges to implementation beyond the
work of promoting the routine use of technologies among health
care providers. We suggest that the hype and high stakes of ML
make these issues more prominent in the mindsets of health
care stakeholders and therefore more likely to impact upon an
ML implementation project. The implementation science
community will need to establish strategies to address these

issues as ML becomes more prominent, each of which requires
ongoing work to be adequately addressed.

Conclusions
In this paper, we have provided an overview of ML for
implementation scientists informed by the NASSS framework,
outlining the use cases of ML as falling into the categories of
decision support and automation. We suggest these use cases
apply to clinical, operational, and epidemiological tasks and
that the primary ways in which ML will enter into health care
in the near term will be through decision support. We then
outlined unique implementation issues posed by ML initiatives
from 4 perspectives, those of health care providers, patients and
the public, health care organizations, and health policy and
systems.

Ultimately, we suggest that the future of ML in health care
remains positive but uncertain, as support from patients, the
public, and a wide range of health care stakeholders is necessary
to enable its meaningful implementation. However, as
applications of ML become more sophisticated and investment
in communications strategies such as data visualization grows,
ML is likely to become more user-friendly and more effective.
If the implementation science community is to facilitate the
adoption of ML in ways that stand to benefit all, the issues raised
in this paper will require substantial attention in the coming
years.
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