

Existing Flat Panel Detectors (FPDs) in C-arm Systems

0

- Technical limitations of the existing scintillator-based energy-integrating FPDs:
 - Poor low-contrast detectability
 - Lack of material quantification capability

- PCDs: pulse detection mode
 Electric pulses induced by each input
 - quanta are counted to Estimate the number of input quanta and the energy of each input quanta if multiple comparators are used
- EIDs: current/charge integration mode

W

Larger Number of Information Carriers/Input Energy

Glenn Knoll:*

- "One of the major limitations of scintillation counters is ... the energy required to product an information carrier (a photoelectron) is of the order of 100 eV or more..."
- "... the use of semiconductor materials as radiation detectors can result in a much larger number of carriers for a given incident radiation event than is possible with any other common detector type."

Material	eV per secondary quanta generated	Average # of secondary quanta per 100 keV
Air	33.97	2,900
CsI(TI)	17	5,900
Si	3.6	28,000
CdTe	4.4	23,000

agger (†)	Hybrid C	Detector	Proof-of-Concept
			X
	I Module	Module	
Manufacturer	Direct Conversion Ima	AB (Now with Varex ging)	Active Region
Model	XC-Hydra FX50	Thor FX10	
Dimensions	51 x 0.6 cm	10 x 5 cm	and the second s
Sensor material	C	dTe	
Sensor thickness	0.75 mm	2 mm	
Maximal frame rate	150 fps	1000 fps	and the second s
# energy thresholds		2	Active
Pixel fill factor	10	00%	Region
Pixel size	10	μm	
			- 797

Potential Applications of C-arm PCD-CT in Image-guided Interventions

High-Speed Angiography and Flow Imaging

W

- Presentations from the University at Buffalo:
- TH-C-201-4: Vanderbilt et al., "BEST IN PHYSICS (IMAGING): Implementation of 1000 Fps CdTe Photon-Counting Detectors (PCD's) for Simultaneous Biplane High-Speed Angiography (HSA)."
- TH-C-201-1: Wu *et al.*, "1000 Fps High Speed Angiography (HSA) of Contrast Injections in An In-Vitro Model with Pulsatile Flow Using Simulated Cardiac Gating Techniques"
- TH-B-207-1: Shields et al., "Evaluation of Shear Forces Within Stenotic Vessel Models Using 1000 Fps X-Ray Particle Image Velocimetry (X-PIV)."
- TH-A-207-3: "Effect of Realistic Pulsatile Flow Versus Constant Flow On Contrast Visualization for 1000 Fps High-Speed Angiography (HSA) in Patient-Specific 3D-Printed Models."

Summary

- The fundamental difference between PCDs and energyintegrating FPDs in existing C-system systems:
- Pulse mode vs. current integration mode
- Semiconductor-based direct-conversion PCD is a sub-type of the PCD family
- Advantages of semiconductor-based direct-conversion PCD
- Low-contrast detectability supremacy
- Single-shot dual-energy imaging
- Superior spatial and temporal resolution

Summary

0

- With proper calibration and correction, high-quality C-arm PCD-CBCT images can be generated
- Potential applications of PCD-CBCT in interventional imaging Spectral imaging for material quantitation and differentiation without compromising dose efficiency and speed of non-spectral imaging
- compromising acose efficiency and speed of non-spectral imaging Non-spectral imaging applications should not be overlooked: Improved gray/white matter delineation (for ASPECTS and henorrhagic transform risk evaluation) Improved detection of intraoperative hemorrhage Improved detection of small blood vessels and devices High frame rate anglography and flow imaging

