Digital Twins of Cancer Patients: A New Perspective to Support Clinical Decisions

Jun Deng, PhD

Yale Smart Medicine Lab Department of Therapeutic Radiology Yale University School of Medicine

AAPM, July 13, 2022, Washington DC

Disclosures

No conflicts of interest

Learning Objectives

• Identify the challenges and opportunities of AI applications in clinical decision support

• Understand a digital twin-based clinical decision support tool for radiation oncology

Radiation Therapy Clinical Workflow

Data type	Format	Accumulation rate	Typical size	Storage
Clinical data	Text	Add 1 MB per week	10 MB	EMR
Radiotherapy data	DICOM-RT	Add 10 MB per day	500 MB	TPS/ROIS
Image data	DICOM	Per clinical need	500 MB	PACS

Multimodality data at spatial-temporal scales ·

Clinical: EHR, lab

Challenges

- **Data challenges**: generating and acquiring high-volume, high-quality, multiscale data
- Modeling and integration challenges: seamlessly integrating data-driven and mechanistic modeling
- Ethical and community challenges: ethical biases, privacy concerns, and patient engagement

A Digital Twin for Each Cancer Patient

Yale school of medicine

What is a Digital Twin?

- A digital twin is a *synchronized digital replica* of a physical system, which is used to *monitor, model, and fine-tune performance* of processes, people, places, systems and devices
- Digital twins can be used for *in silico* simulations:
 - What if the engine runs 50% hotter?
 - *What if* the wind speed is 10 times faster?
- Proposed by Michael Grieves in 2002, defined by John Vickers of NASA in 2010 to improve physical model simulation of spacecraft (<u>https://en.wikipedia.org/wiki/Digital_twin</u>)
- Aerospace engineering, manufacturing, construction, automotive, healthcare

Why Digital Twins in Radiation Oncology?

- A *patient-tailored model* that incorporates genetic, molecular, clinical, environmental, and social factors to *predict individual patient's status* for
 - Adaptive radiation therapy based on multimodal real-time data
 - Predictive modeling of treatment response short-term and long-term
 - Early intervention based on precise monitoring of adverse effects
 - Virtual clinical trials

The Big Picture

Significance

Innovation

- Connected multiscale multimodality data
- New knowledge of healthy and disease states at spatial-temporal scales
- Computational and mathematical models for dynamic multiscale systems in biology
- Computational learning frameworks

Peng et al., Archives of Comp Methods Eng, 2020

DOI: 10.1371/iournal.pcbi.1005991

Multiscale Modeling

- Development of multiscale representations
 - PK-PD model of drug-tumor interactions to predict tumor evolution
 - Physics-informed ML on clinical and imaging data to develop dynamical systems
 - Deep graph similarity learning to identify similar patients
 - - Ghaffarizadeh et al. (2018) Guy et al. (2019)

DOI: 10.1038/s41598-019-46296-4

Current time: 10 days 0 hours and 0.00 minute

73231 cells

Personalized Decision Support

- User-in-the-loop deep learning for personalized clinical decision support
- Leveraging knowledge graph and HPC for optimal treatment pathways

RT Efficacy vs Toxicity

Conclusions

- Digital twins will enable predictive oncology for cancer patients
- Understanding cancer biology and patient care trajectory is the key
- Modeling of multiscale multimodality data is challenging

Yale Smart Medicine Lab

Gregory Hart Vanessa Yan Bo Qin James Jensen Janus Zhu Jian Chen Nicole Lam Vivian Zhou Wenting Long Ivy Zhang Andrew Niecikowski Sena Katako James Rawlins Bill Feng Suba Ramesh Siena Cizdziel

Acknowledgement

A Comprehensive Cancer Center Designated by the National Cancer Institute

A Digital Twin Consortium

- · Yale University (CT)
- · Virginia Tech (VA)
- Accenture Federal Services (VA)
- · University of Kentucky (KY)
- University of Texas Austin (TX)
- MIT (MA)
- George Washington University (DC)
- · Nationwide Children's Hospital (OH)
- · Mayo Clinic (MN)
- · Harvard University (MA)
- Roswell Park Cancer Center (NY)
- University of California San Diego (CA)
- Genentech/Roche (CA)
- University of Maryland Baltimore County (MD)
- University of Massachusetts Amherst (MA)
- · University of Virginia (VA)
- · IBM (CA)
- University of South Carolina (SC)
- Temple University (PA)
- University of Pennsylvania (PA)