Digital Twins of Cancer Patients: A New Perspective to Support Clinical Decisions

Jun Deng, PhD

Yale Smart Medicine Lab
Department of Therapeutic Radiology
Yale University School of Medicine

AAPM, July 13, 2022, Washington DC
Disclosures

No conflicts of interest
Learning Objectives

• Identify the challenges and opportunities of AI applications in clinical decision support

• Understand a digital twin-based clinical decision support tool for radiation oncology
Multimodality data at spatial-temporal scales

Clinical: EHR, lab results, diagnoses, procedures, pathology/histology data, radiology images, and microbiology data

- **Mobile health:** wearable devices, fitness trackers, sensors, and apps

- **Molecular profiling:** genomic and genetic testing data, and multi-omics data

- **Social media**

- **Environmental**

- **Lifestyle**

- **Dietary**

- **Family history**

- **Medication**
Challenges

- **Data challenges**: generating and acquiring high-volume, high-quality, multiscale data

- **Modeling and integration challenges**: seamlessly integrating data-driven and mechanistic modeling

- **Ethical and community challenges**: ethical biases, privacy concerns, and patient engagement
A Digital Twin for Each Cancer Patient
What is a Digital Twin?

- A digital twin is a **synchronized digital replica** of a physical system, which is used to **monitor, model, and fine-tune performance** of processes, people, places, systems and devices.

- Digital twins can be used for **in silico** simulations:
 - *What if* the engine runs 50% hotter?
 - *What if* the wind speed is 10 times faster?

- Aerospace engineering, manufacturing, construction, automotive, healthcare
Why Digital Twins in Radiation Oncology?

• A patient-tailored model that incorporates genetic, molecular, clinical, environmental, and social factors to predict individual patient’s status for:

 – Adaptive radiation therapy based on multimodal real-time data

 – Predictive modeling of treatment response short-term and long-term

 – Early intervention based on precise monitoring of adverse effects

 – Virtual clinical trials
The Big Picture

Personal Phenotypes

- Personal History
- Family History
- Genome
- Transcriptome
- Proteome
- Immunome
- Metabolome

Digital Twin Simulation Using HPC

- Clinical
- Behavioral
- Imaging
- Physiological
- Exposome
- Microbiome

Choose a care path

- Hormone Therapy
- Radiation Therapy
- Immunotherapy
- Surgery
- Targeted Therapy
- Chemotherapy

Personalized Care Trajectories

Shared Decision Making

Yale SCHOOL OF MEDICINE
Significance

Spatial Scale Time Scale

Predictions Patient Care Decision
Innovation

• Connected multiscale multimodality data
• New knowledge of healthy and disease states at spatial-temporal scales
• Computational and mathematical models for dynamic multiscale systems in biology
• Computational learning frameworks

Peng et al., Archives of Comp Methods Eng, 2020
Multiscale Modeling

- Development of multiscale representations
 - PK-PD model of drug-tumor interactions to predict tumor evolution
 - Physics-informed ML on clinical and imaging data to develop dynamical systems
 - Deep graph similarity learning to identify similar patients

Ghaffarizadeh et al. (2018)
DOI: 10.1371/journal.pcbi.1005991

Guy et al. (2019)
DOI: 10.1038/s41598-019-46296-4
Personalized Decision Support

- User-in-the-loop deep learning for personalized clinical decision support
- Leveraging knowledge graph and HPC for optimal treatment pathways
Conclusions

- Digital twins will enable predictive oncology for cancer patients
- Understanding cancer biology and patient care trajectory is the key
- Modeling of multiscale multimodality data is challenging
Yale Smart Medicine Lab

Gregory Hart Wenting Long Ivy Zhang
Vanessa Yan Andrew Niecikowski
Bo Qin Sena Katako
James Jensen James Rawlins
Janus Zhu Bill Feng
Jian Chen Suba Ramesh
Nicole Lam Siena Cizdziel
Vivian Zhou
A Digital Twin Consortium

- Yale University (CT)
- Virginia Tech (VA)
- Accenture Federal Services (VA)
- University of Kentucky (KY)
- University of Texas Austin (TX)
- MIT (MA)
- George Washington University (DC)
- Nationwide Children’s Hospital (OH)
- Mayo Clinic (MN)
- Harvard University (MA)
- Roswell Park Cancer Center (NY)
- University of California San Diego (CA)
- Genentech/Roche (CA)
- University of Maryland Baltimore County (MD)
- University of Massachusetts Amherst (MA)
- University of Virginia (VA)
- IBM (CA)
- University of South Carolina (SC)
- Temple University (PA)
- University of Pennsylvania (PA)