ARTIFICIAL INTELLIGENCE IN LUNG CANCER: USING RADIOMICS TO PREDICT TUMOR RECURRENTNESS

Sarah A. Mattonen, Ph.D.
Assistant Professor, Depts. of Medical Biophysics, Oncology, and Biomedical Engineering
Baines Research Chair in Translational Cancer Imaging
Western University, London, Ontario, Canada
Non-Small Cell Lung Cancer

- Survival rates remain quite poor despite advances in diagnosis and treatment.

- 5-year survival rates:
 - Stage I: 55-75%
 - Stage II: 40-50%
 - Stage III: 5-35%
 - Stage IV: <5%

SEER Stat Fact Sheets: Lung and Bronchus Cancer.
The Role of Imaging

Computed Tomography (CT) Positron Emission Tomography (PET)
The Role of Imaging

Computed Tomography (CT) Positron Emission Tomography (PET)

3 cm

SUVmax = 9
Radiomics

- Radiomics aims to extract more complex quantitative information (e.g., texture) from standard medical images.
Positron Emission Tomography (PET)

- SUVmax has been shown to predict a higher risk of recurrence or death in NSCLC.

Positron Emission Tomography (PET)

- Tumour invasion from the main tumour mass.
- Dissemination of disease throughout the body.

Objective

To develop a software system integrating PET imaging and non-imaging biomarkers to improve lung cancer prognosis and risk stratification.
Computer-Aided Risk Stratification

Pre-Treatment Imaging → Segmentation → Radiomic Feature Extraction → Clinical Information → Machine Learning

Risk Stratification

High Risk of Failure

Low Risk of Failure

Computer-Aided Risk Stratification

Radiomic Feature Extraction

Clinical Information

Machine Learning

Pre-Treatment Imaging

Segmentation

High Risk of Failure

Low Risk of Failure

Risk Stratification

Proportion Not Progressing

Time (days)
Materials

► Training Cohort (n = 145):
 > Selected from two local medical centers.
 > All patients had pre-operative PET/CT performed prior to surgery.
 > Feature selection and model development

► Testing Cohort (n = 146):
 > Selected from three local medical centers.
 > Underwent PET/CT imaging prior to definitive treatment as part of observational biomarker study.
 > Model evaluation
Segmentation: Tumour

- The **metabolic tumour volume (MTV)** was segmented on the PET image.
- A 3-dimensional **penumbra** region was also generated surrounding the MTV to sample surrounding uptake.
- Three regions were evaluated:
 - MTV only
 - Penumbra only (excluding the MTV)
 - MTV plus penumbra
Methods: Bone Marrow Segmentation

MIM (MIM Software Inc., Cleveland, OH).

Radiomic Feature Extraction

A total of 668 radiomics features were extracted from the volumes of interest.

GitHub: ripl/3d_qifp
Methods: Model Training

- Top predictive features were selected using randomizations of 4-fold cross-validation of LASSO Cox regression.

Clinical
Methods: Model Training

- Top predictive features were selected using randomizations of 4-fold cross-validation of LASSO Cox regression.

Stage I Stage II Stage III Stage IV

Clinical Tumour Plus Penumbra
Methods: Model Training

- Top predictive features were selected using randomizations of 4-fold cross-validation of LASSO Cox regression.

Clinical + Tumour Plus Penumbra + Bone Marrow
Results: Multivariate Model

Clinical + Tumor + Bone Marrow

<table>
<thead>
<tr>
<th>Feature Type</th>
<th>Feature</th>
<th>HR [95% CI]</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical</td>
<td>Stage</td>
<td>1.98 [1.45-2.70]</td>
<td>p<0.001*</td>
</tr>
<tr>
<td>Blood</td>
<td>WBC (1000/uL)</td>
<td>0.99 [0.88-1.11]</td>
<td>p=0.81</td>
</tr>
<tr>
<td></td>
<td>Hemoglobin (g/dL)</td>
<td>0.99 [0.82-1.20]</td>
<td>p=0.93</td>
</tr>
<tr>
<td></td>
<td>Platelets (1000/uL)</td>
<td>1.00 [1.00-1.01]</td>
<td>p=0.93</td>
</tr>
<tr>
<td>Tumor</td>
<td>MTV Plus Penumbra GLCM Energy (MAD)</td>
<td>0.69 [0.40-1.19]</td>
<td>p=0.18</td>
</tr>
<tr>
<td></td>
<td>Penumbra GLCM Entropy (IQR)</td>
<td>1.35 [0.97-1.86]</td>
<td>p=0.07</td>
</tr>
<tr>
<td></td>
<td>Penumbra GLCM Cluster Shade (Max)</td>
<td>1.17 [0.84-1.63]</td>
<td>p=0.36</td>
</tr>
<tr>
<td>Bone Marrow</td>
<td>GLCM Sum Mean (Skewness)</td>
<td>0.52 [0.32-0.84]</td>
<td>p=0.008*</td>
</tr>
<tr>
<td></td>
<td>GLCM Cluster Tendency (Skewness)</td>
<td>1.62 [1.02-2.59]</td>
<td>p=0.04*</td>
</tr>
</tbody>
</table>

Results: Risk Stratification

(A) Training Cohort

(B) Testing Cohort

Qualitative Results

SUV\(_{\text{max}}\) = 10.3
Stage I
High-Risk Radiomics
Recurrence

SUV\(_{\text{max}}\) = 10.1
Stage II
Low-Risk Radiomics
No Recurrence
Qualitative Results

(A) Stage I
High-Risk Radiomics
Recurrence

(B) Stage III
Low-Risk Radiomics
No Recurrence
Results: Summary

Concordance = 0.69 [0.60-0.77]

Concordance = 0.75 [0.67-0.82]

Concordance = 0.78 [0.70-0.85]
CAN ADDING CT FEATURES IMPROVE PERFORMANCE?

Jaryd Christie, CAMPEP PhD Candidate
Tumor and Peri-tumoral CT Segmentation

- MATLAB based-GUI for semi-automatic tumor segmentation on CT

https://github.com/baines-imaging-mattonen-lab/CT-Lung-Tumour-Segmentation
Qualitative Features

- Tumour features that describe the location and geometry
- Features which characterize the lung tissue, bronchi, and lumen

Spiculated

Severe Emphysema
Results: Feature Selection

- **Seven** selected features:
 - **One** clinical feature
 - **Stage**
 - **Six** radiomic features (3 texture, 3 first-order)
 - Three CT (2 Tumour, 1 Peritumoural)
 - Three PET (2 Peritumoural, 1 Bone Marrow)
Results: Model Evaluation

- Training: **Stage** vs **Radiomics + Stage**
 - Concordance: 0.67 [95% CI: 0.58 – 0.76] vs 0.78 [95% CI: 0.70-0.86]
 - \(p < 0.005 \)

- Testing: **Stage** vs **Radiomics + Stage**
 - Concordance: 0.60 [95% CI: 0.48 – 0.74] vs 0.76 [95% CI: 0.59-0.87]
 - \(p = 0.008 \)

- Radiomics model significantly stratified patients into high- and low-risk of recurrence
Results: Risk Stratification

Training, n=101

Concordance = 0.78

Testing, n=34

Concordance = 0.76
Conclusions

► These radiomics based tools have the potential to identify NSCLC patients at a higher risk of recurrence and may add clinical utility for risk stratification.

► This assist physicians in distinguishing patients who may benefit from adjuvant or more aggressive personalized treatment options.
Next Steps

- Collaborations for external validation of models.
- Implementation of standardized radiomics features and open-source software
Translational Cancer Imaging

Computer-Aided Decision Support

Improve Patient Outcomes

Acknowledgements

Department of Oncology, Western University
Pencilla Lang, MD, PhD
Andrew Arifin, MD
David Palma, MD, PhD
Jon Snir, PhD
Kathleen Surry, PhD

Department of Medical Imaging, Western University
Mohamed Abdelrazek, MD
Narinder Paul, MD

Division of Thoracic Surgery, Western University
Richard Malthaner, MD
Mehdi Qiabi, MD
Rahul Nayak, MD
Deb Lewis

Department of Pathology, Western University
Matt Cecchini, MD, PhD

Department of Radiology, Stanford University
Sandy Napel, PhD
Kristen Yeom, MD
Guido Davidzon, MD, MSc
Ann Leung, MD
Daniel Rubin, MD, MS
Minal Vasanawala, MD

Fred Hutchinson Cancer Center, University of Washington
Vish Nair, MD
Perrin Romine, MD

@MattonenLab
http://www.bainesimaging.com/
Translational Cancer Imaging

Computer-Aided Decision Support

Improve Patient Outcomes