

Carrie Bartels RT(R) CT Senior CT Technologist CT Protocol Team UW Health - Radiology 600 Highland Avenue Madison, WI 53792 608-890-5458 cbartels2@uwhealth.org CONTRAST BASICS FOR PROTOCOL OPTIMIZATION

OBJECTIVES

Overview of why Contrast is used in CT
Contrast administration access
Types of Exams that use contrast and purpose
Factors Affecting Contrast Enhancement and Scan Timing

WHY IS CONTRAST USED IN CT?

CONTRAST ADMINISTRATION ACCESS

CIRCULATORY SYSTEM

- 1. Inject via antecubital vein
- 2. Blood goes into SVC and then into right atrium
- 3. Blood goes to right ventricle and goes out pulmonary artery to lungs
- 4. Returns via pulmonary vein and goes to left atrium, to the left ventricle then the aorta.

Coronaries. Then head vertebral

vessels.

Antecubital Veins

SAM QUESTION

Numbers decrease with ROI locations via path blood follows from injection site → as blood/lodine mix, HU goes down as we move from injection site because of blood mixing diluting agent.

Min: -48 Max: 2137 (HU) Average: 958.75 StdDev: 580.81 (HU) Area: 49.18 mm² Perim: 26.61 mm

1. Vein closest to injection site: 958 HU Min: 331 Max: 785 (HU) Average: 516.71 StdDev: 132.65 (HU Area: 32.73 mm² Perim: 20.70 mm

2. SVC: 516 HU

3. Pulmonary arteries: 389 HU

Min: 356 Max: 429 (HU) Average: 389.45 StdDev: 15.45 (HU) Area: 105.00 mm² Perim: 36.85 mm

Min: 257 Max: 377 (HU) Average: 322.01 StdDev; 26:67 (HU) Area: 152.73 mm² Perim: 44.01 mm

> 4. Descending aorta: 322 HU

Arterial enhancement is "in and out" faster relative to parenchymal

Reference Bae, K. T., J. P. Heiken, and J. A. Brink. (1998). "Aortic and hepatic contrast medium enhancement at CT. part i. prediction with a computer model." *Radiology* 207(3):647–55.

Longer and longer injections push CT enhancement up and delay peak enhancement

Bigger people have more blood... which dilutes contrast agent

Average peak enhancement times

Arterial ~ 15 seconds

Hepatic ~ 40 seconds

Portal Venous ~ 70 seconds

Contrast time of arrival will vary from person to person, but assuming an antecubital injection, values will generally be in the range of 7 to 10 seconds for the pulmonary artery, 12 to 15 seconds for the ascending aorta, 15 to 18 seconds for the abdominal aorta, and 30 to 40 seconds for hepatic parenchyma.

Reference:

"The CT Handbook: Optimizing Protocols for Today's feature-rich scanners" By Tim Szczykutowicz. Medical Physics Publishing 2020

PIV (Peripheral Intravenous Line)

IO (intraosseous) for Trauma Patients

CT IV Requirements				
Scan Type	IV gauge	Side Placement		
TA Chest/Abdomens/Pelvis	18	AC Either arm		
CTA Upper Ext.	18	AC Unaffected side		
CTA Lower Ext.	18	AC Either arm		
CTA Gated Chest	18	AC Right arm		
CTA Non-Gated Chest	18	AC Right arm		

- PICC (Peripherally Inserted Central-Line Catheter)/Central Line
- Midline (inserted by RN or Radiology)
- Port- Regular vs Power

	-	
Indication(s)	Protocol	Oral Contrast Type
RCC, NET (hypervascular mets)	Biphasic	Water
Cancers with possible hep met disease. (EXCEPTIONS: Not for lymphoma, testicular ca, RCC/NET, prostate ca, discuss in young pts)	High quality cancer follow up	Oral
Cirrhosis, HCC	R/o HCC	Water
Cirrhosis, eval for transplant	Liver Transplant recipient work up	Water
Possible liver donor	Liver donor workup	Water
Pre liver resection, post transplant	Consider triphasic liver	Water
Abdominal pain, Pancreatitis	Routine abdomen/pelvis	Oral
Assess for hernia	Hernia protocol	Oral
Assess for pancreas cancer, assess resectability. (But if known metastatic or unresectable pancreas cancer, see above, high quality cancer follow up)	Pancreas cancer	Water
Pancreas transplant	Consider CTA pancreas tx if requested	Water
Mesenteric ischemia	Mesenteric ischemia	Water
Active bleeding/active GI bleeding. Bleeding associated with transplant, donor, Pancreatitis, Hypervascular Metastasis, or HCC	Active Bleeder	None
Occult GI bleed (non-acute)	GI bleeding protocol	Breeza
Assess for hematoma (RP hematoma), no active bleed	Non con A/P	None
Crohn with acute pain/complication	Routine abdomen/pelvis, + oral	Oral

Neck/Chest/Abdomen/Pelvis

Scan Combination	Contrast Dosage	Injection Rate	
	C/A/P + Neck Combo		
C/A/P	86 mL lohexol 350 mgl/mL + 20 mL NaCl flush 3 mL/sec		
Neck	64 mL lohexol 350 mgl/mL + 20 mL NaCl flush	2 mL/sec	
Change the F	Prep Delay to 45 seconds (from 115 seconds) on the Neck protoco	ol.	
	Chest + Neck Combo		
Chest	64 mL lohexol 350 mgl/mL + 30 mL NaCl flush 3 mL/s		
Neck	64 mL lohexol 350 mgl/mL + 30 mL NaCl flush	2 mL/sec	
Change the F	Prep Delay to 45 seconds (from 115 seconds) on the Neck protoco	bl.	

• It is important to scan the CT Neck as quickly as possible to take advantage of residual contrast from CAP bolus.

- You will have to End Exam, re-position, re-zero, and re-scout the patient. Select small, medium and large based on the table below.
- The CT Neck Scan requires a separate contrast injection
- Start the scan at the top of the orbits and scan to the carina. Remind the patient not to swallow during the scan.
- Please remember to change the prep group delay in the neck protocol to 45 seconds

Factors Affecting Contrast Enhancement and Scan Timing

nstructions	Procedure Data	- 88 Lb
Select Patient Weight	Patient Weight	88 Lb - 131 Lb
	Patient ID	132 Lb - 163 Lb
	Concentration 370 mg/ml	164 Lb - 208 Lb
	Max Flow Rate	209 Lb - 241 Lb
	6.0 ml/s	242 Lb - 276 Lb
Pressure Limit		276 Lb +

Weight-Based Contrast Instructions

To convert between pounds (lbs), kilograms (kg), and or stones (st) see the weight conversion table.

All injections should be followed by a 50 mL saline flush. See the "IV Contrast Parameters" section of each protocol for more details.

Contrast volume for users without the Medrad P3T Option

This table uses an injection rate of 3 mL/sec

Patient Weight (Ibs)	Contrast Volume (mL) (300 mg/mL concentration)	Contrast Volume (mL) (350 mg/mL concentration)	Saline Volume (mL)
130 and less	80 (minimum amount to load)	69 (minimum amount to load)	50
140	86	74	50
150	92	79	50
160	98	84	50
165	101	87	50
170	104	89	50
175	107	92	50
180	110	94	50
190	116	99	50
200	122	105	50
210	129	111	50
220	135	116	50
230	141	121	50
240	147	126	50
250 and larger	150 (max amount to load)	129 (max amount to load)	50

https://uwgect.wiscweb.wisc.edu/

Patient weight = 250lbs

Patient weight = 120lbs

"The CT Handbook: Optimizing Protocols for Today's feature-rich scanners" By Tim Szczykutowicz. Medical Physics Publishing 2020 > JAMA. 2022 Jun 9;e229879. doi: 10.1001/jama.2022.9879. Online ahead of print.

Comparison of Strategies to Conserve Iodinated Intravascular Contrast Media for Computed Tomography During a Shortage

Matthew S Davenport ¹, Philip Chu ², Timothy P Szczykutowicz ³, Rebecca Smith-Bindman ²

Affiliations + expand PMID: 35679081 PMCID: PMC9185519 DOI: 10.1001/ Free PMC article

Abstract

This study models the amount of contrast that could be examinations in the context of the current a global shor

http://rfaraday/mediawiki/index.php/ Contrast_Crisis_2022

UW CT Protocols UWMF (1 S. Park/WIMR) CT Protocols 3D Lab TOC Turbo Button Instructions UWHC Miscellaneous Instructions Archive of Bi-Weekly Updates Protocol Design Philosophy Protocolling Assistance Document

Page Discussion Read View source View history Search Q Adult Protocol Table of Contents

Link to Table of Contents for Pediatric Protocols

Contrast Crisis 2022

CTA CORONARY - Bolus Tracking vs Timing Bolus

- Series 3 CTA Coverage: Same as non contrast scan
 - Use cardiac breathing instructions
 - Please record a new HR before this scan phase (see picture below)
 - SmartPrep on the descending aorta at the level of the carina. Dynamic transition is turned on so the scan will progress without the need for you to hit 'scan phase'.

- Take 16sec + Bolus time = Prep delay
- 16 seconds includes the 12 seconds of breathing instructions PLUS a phantom 4 seconds. Add the 16 to your MROI peak and that is your Timing Bolus Time/ Prep Group Delay.
- If the timing for the Prep Group Delay is less that 20 seconds, please change the prep group to 20 seconds. We do not want to use anything less than 20 seconds for a delay.

The University of Wisconsin–Madison (UW) CT protocols were created so that you not only image *gently*, but you also image *well*. This effort combines the expertise of UW radiologists, physicists, and CT technologists with ISO quality consultants, GE CT engineers and their application specialists.

Our partnership with GE Healthcare helps us take full advantage of the unique features of each GE CT scanner platform. Scan settings are optimized for the latest reconstruction algorithms. By adjusting the scan and reconstruction parameters, each protocol is optimized to enhance

https://uwgect.wiscweb.wisc.edu/