INVESTIGATING THE ESTIMATION OF CTDI_{VOL} USING A HELICAL TECHNIQUE

Izabella Barreto, PhD, DABR Clinical Assistant Professor Department of Radiology University of Florida

DISCLOSURES

• I have no relevant disclosures

CAN CTDI_{VOL} BE **ESTIMATED BY EXPOSING** THE ENTIRE **ION CHAMBER HELICALLY?**

MEDICAL IMAGING

The helically-acquired CTDI_{vol} as an alternative to traditional methodology

Stephanie M. Leon¹ | Robert J. Kobistek² | Edmond A. Olguin¹ | Zhongwei Zhang¹ | Izabella L. Barreto¹ | Bryan C. Schwarz¹

¹Department of Radiology, University of Florida College of Medicine, Gainesville, FL, USA

²Consulting Radiological Physicist, National Physics Consultants, Ltd, Mentor, OH, USA

Author to whom correspondence should be addressed. Stephanie M. Leon E-mail: leons@radiology.ufl.edu

Present address

Zhongwei Zhang, Washington University School of Medicine, St. Louis, MO, USA

Abstract

Purpose: Most clinical computed tomography (CT) protocols use helical scanning; however, the traditional method for CTDI_{vol} measurement replaces the helical protocol with an axial scan, which is not easily accomplished on many scanners and may lead to unmatched collimation settings and bowtie filters. This study assesses whether CTDI_{vol} can be accurately measured with a helical scan and determines the impact of pitch, collimation width, and excess scan length.

Methods: CTDI_{vol} was measured for 95 helical protocols on 31 CT scanners from all major manufacturers. $CTDI_{vol}$ was measured axially, then again helically, with the scan range set to the active area of the pencil chamber seen on the localizer image. $CTDI_{vol}$ measurements using each method were compared to each other and to the scanner-displayed $CTDI_{vol}$. To test the impact of scan length, the study was repeated on four scanners, with the scan range set to the phantom borders seen on the localizer.

Results: It was not possible to match the collimation width between the axial and helical modes for 12 of the 95 protocols tested. For helical and axial protocols with matched collimation, the difference between the two methods averaged below 1 mGy with a correlation of $R^2 = 0.99$. The difference between the methods was not statistically significant (P = 0.81). The traditional method produced four measurements that differed from the displayed $CTDI_{vol}$ by >20%; no helical measurements did. The accuracy of the helical $CTDI_{vol}$ was independent of protocol pitch ($R^2 = 0.0$) or collimation ($R^2 = 0.0$). Extending the scan range to the phantom bor-

WILEY

SESSION OUTLINE

1. Limitations of measuring the CTDI_{vol}

2. Estimating CTDI_{vol} with a helical acquisition

3. Results of a national generalizability study

QUANTITATIVE LIMITATIONS OF THE CTDI_{vol}

CTDI excludes dose that accumulates for long scans

CTDI excludes the primary beam for collimations wider than 100 mm

CTDI is inappropriate for stationary table applications

PRACTICAL LIMITATIONS OF THE CTDI_{vol} MEASUREMENT

- CTDI is measured with a single axial scan with no table motion
 - Helical protocols must be converted to an axial scan

- In some cases, collimation or bowtie filter cannot be matched
 - ACR manual states to use collimations matched as closely as possible
 - These measurements may not accurately reflect the clinical protocol's CTDI
 - Converting a helical protocol to an axial scan is time consuming & error-prone

- Manufacturer's CTDI measurement mode may be unavailable or impractical
- Some Dual Energy CT protocols can't be acquired in axial mode

Scanners Evaluated

31 CT Scanners 10 GE, 10 Canon, 6 Siemens, 5 Philips

16 - 320 Detector Rows

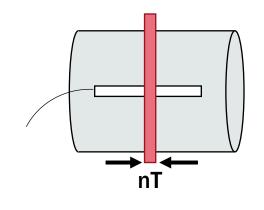
Manufactured 2005 - 2017

Protocols Evaluated

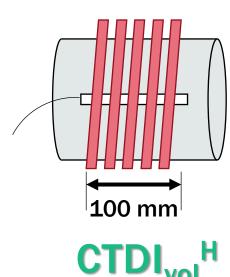
95 Clinical & Helical Protocols Adult & Pediatric Head & Abdomen

8 - 40 mm Collimations

0.29 - 1.73 Helical Pitch


Ş

FOR EACH PROTOCOL, CTDI_{vol} WAS:

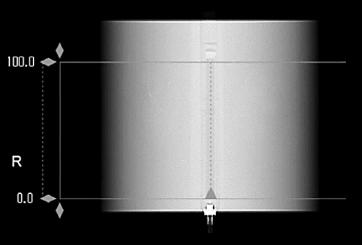

1. Measured with the Axial Method

2. Measured with the Helical Method

3. Recorded from the **Scanner Display**

CTDI_{vol}^A

DETERMINE CTDI_{VOL}A


Using the methodology described by the ACR

- Acquire a single axial slice at the center of the phantom
- If the clinical protocol is normally scanned helically, change to an axial scan with the same (or closest) beam width

$$CTDI_{100}(mGy) = \frac{100 \ mm \ \cdot M \ (mGy)}{n \ \cdot T(mm)} \qquad CTDI_{vol}^A(mGy) = \frac{1}{p} \left(\frac{1}{3} \ CTDI_{100,center}^A + \frac{2}{3} \ CTDI_{100,periphery}^A\right)$$

DETERMINE CTDI_{VOL}^H

MEASURE

- **1.** Acquire a localizer image of the chamber in the CTDI phantom
- 2. Select the helical clinical protocol, set a fixed mA
- 3. Set the 100 mm scan length to cover the visible pencil chamber
- 4. Scan the chamber with a helical acquisition
- 5. Perform 3 times each in the central & peripheral holes

CALCULATE

$$CTDI_{vol}^{H}(mGy) = \left(1/3 \cdot M_{H}^{center} + 2/3 \cdot M_{H}^{peripheral}\right)$$

 $M_{\rm H}$ is the meter reading from the helical acquisition

Don't incorporate pitch $(M_H$ was acquired with it)

DATA ANALYSIS

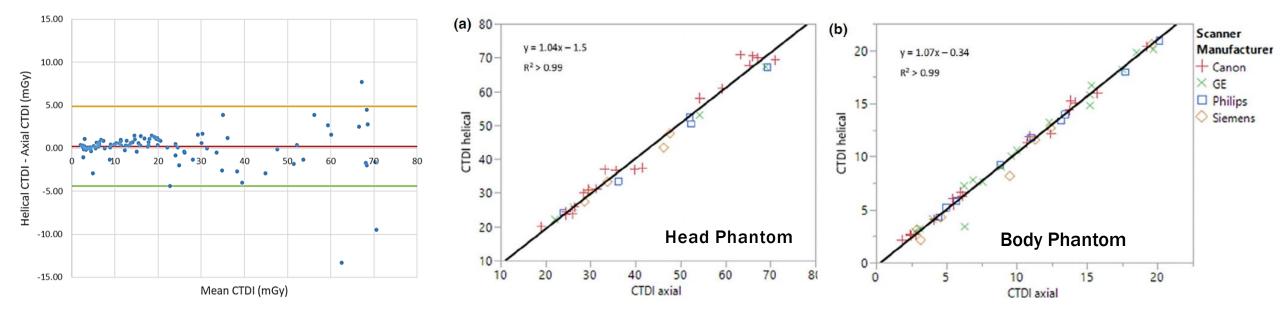
ASSESSED REPRODUCIBILITY OF MEASUREMENTS EVALUATED DIFFERENCES BETWEEN METHODS COMPARED MEASUREMENTS TO DISPLAYED CTDI_{VOL}

RESULTS

CTDI_{vol}^A could not match collimation for 12 of the 95 protocols tested

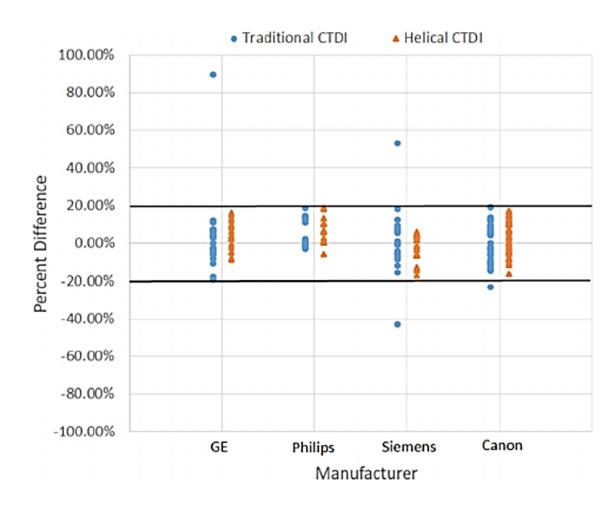
The bowtie filter size was not always visible to user, difficult to ensure match

CTDI_{vol}^H uses the clinical protocol, avoiding these complications

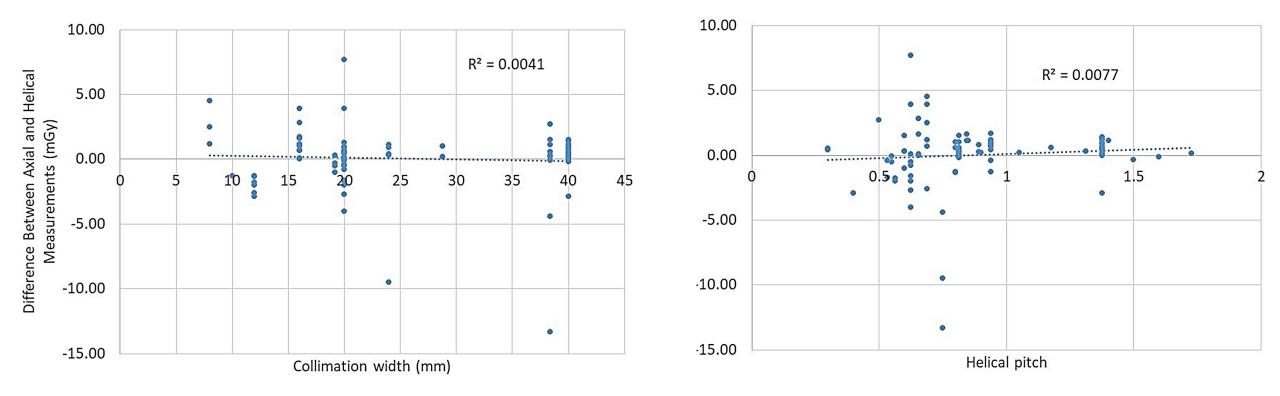

REPRODUCIBILITY

- 1) Measurements were repeated 5 times on 3 scanners
- 2) The mean coefficient of variation (CV) was calculated
 - CTDI_{vol}^H produced less variation than CTDI_{vol}^A for abdomen protocols

		Axia Metho		Helica Metho	
		Mean CTDI _{vol} ^A (mGy)	CV (%)	Mean CTDI _{vol} ^H (mGy)	CV (%)
Adult Head	Canon	39.7	0.15	37.0	0.17
Read	GE	53.9	0.42	55.0	0.30
A H	Siemens	46.3	0.04	43.4	0.09
Adult Abdomen	Canon	14.2	1.31	14.1	0.19
Abdomen	GE	15.0	2.55	14.9	0.22
	Siemens	8.9	4.17	8.2	0.32

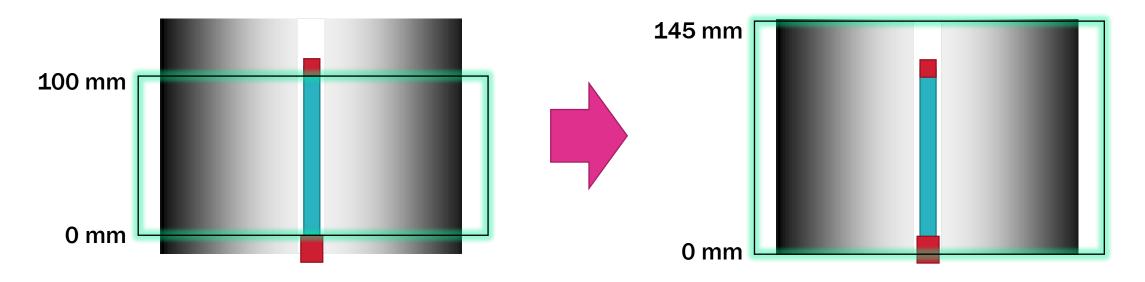

AXIAL & HELICAL METHODS SHOWED EXCELLENT AGREEMENT

- Mean difference between CTDI_{vol}^A & CTDI_{vol}^H ranged 0.0 to 0.6 mGy for all protocols (95% CI = -4.4 to 4.9 mGy) with no significant differences between methods (p=0.81)
- Both methods had strong linear correlations



BOTH HELICAL & AXIAL MEASUREMENTS AGREED WITH DISPLAYED CTDI_{VOL}

- Mean difference between measured and displayed CTDI_{vol} ranged -0.6 to 0.5 mGy for both CTDI_{vol}^A & CTDI_{vol}^H methods
- 4 protocols differed >20% from the display when measured with CTDI_{vol}^A
 - 1 had unmatched collimation
 - 3 had low CTDI_{vol} (2.1 3.2 mGy)
- However, these dropped to <20% when measured with CTDI_{vol}^H



DIFFERENCES BETWEEN CTDI_{VOL}^A & CTDI_{VOL}^H WERE INDEPENDENT OF COLLIMATION WIDTH AND PITCH

IMPACT OF EXCESS SCAN LENGTH

- Since it can be difficult to visualize the pencil chamber, the procedure was repeated with the scan range set to the phantom borders rather than the chamber volume
- The measured CTDI_{vol}^H increased in all cases (range 2.1%–9.7%)
- Recommend adherence to chamber-only protocol

CONCLUSIONS

The CTDI_{vol}^H measurement

- had excellent agreement with CTDI_{vol}^A and the scanner-reported CTDI_{vol}
- is independent of helical pitch and collimation width
- is based on a known & current metric: the CTDI_{vol}
- can be incorporated into current practice and accomplished more easily than the axial method

Limitations

- Protocols with DECT or >40 mm collimations were not tested
- Calculation of displayed CTDI_{vol} varies with manufacturer
- CTDI_{vol}^A is not mathematically equivalent to CTDI_{vol}^H
 - However, measurements suggest CTDI_{vol} may be approximated helically

MEDICAL IMAGING

The helically-acquired CTDI_{vol} as an alternative to traditional methodology

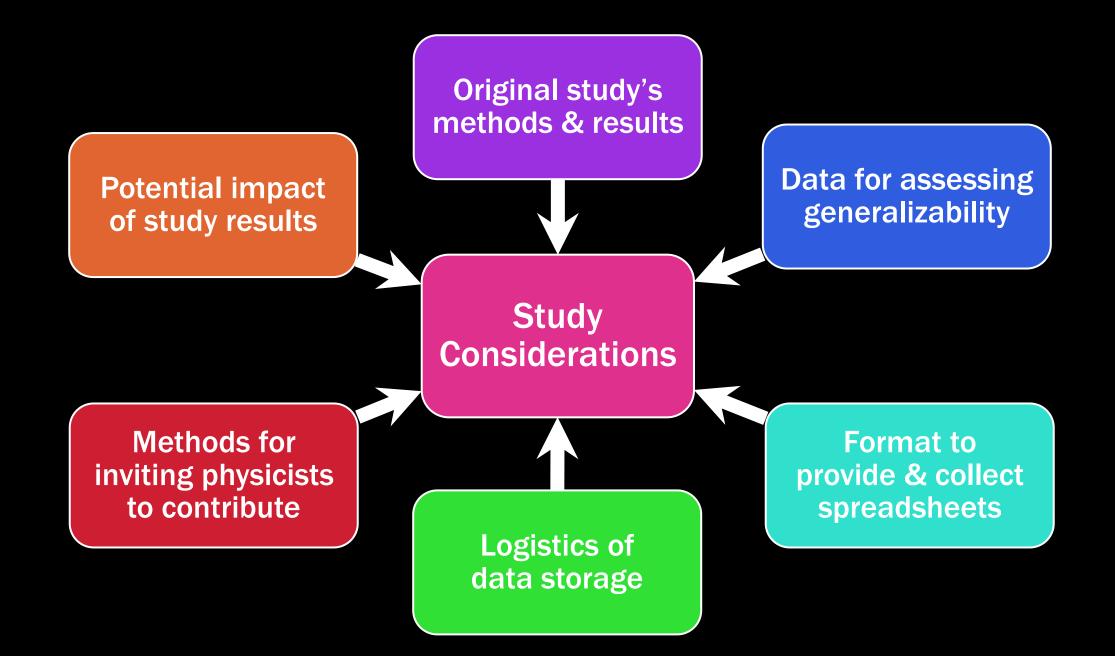
✓ THIS METHOD WORKED FOR THE CO-AUTHORS

3 faculty & 2 residents from the University of Florida

WILEY

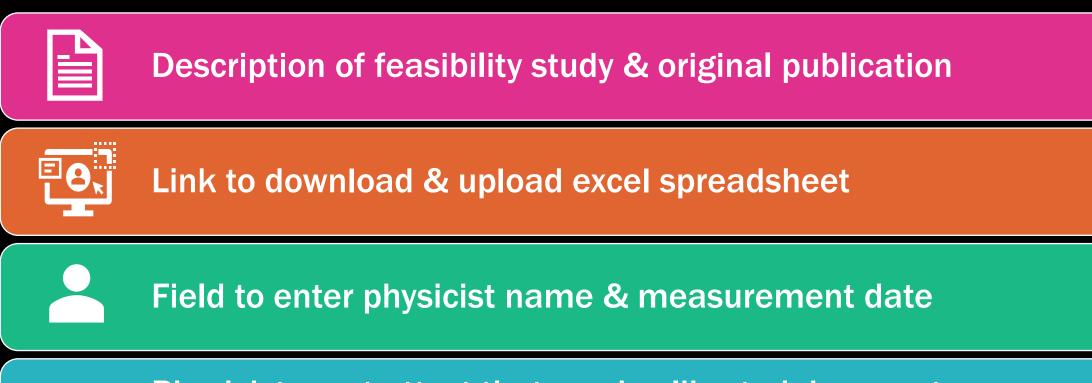
1 consulting physicist from National Physics Consultants

WILL IT WORK For everyone?


A GENERALIZABILITY STUDY WAS DESIGNED AND LAUNCHED

CO-AUTHORS DISCUSSED METHOD WITH ACR PHYSICISTS TOGETHER, DESIGNED A FEASIBILITY STUDY LAUNCHED STUDY ON A WEB-BASED PLATFORM INVITED ALL PHYSICISTS TO CONTRIBUTE DATA

STUDY DESIGN


Designed an excel spreadsheet to provide study participants with:

- Standardized instructions
- A form to collect data on CT scanner, dose meter, & protocol information
- CTDI measurement forms using <u>both</u>

 Traditional axial method
 New helical method

STUDY LAUNCHED ON ONLINE PLATFORM

Physicist must attest that used calibrated dose meter & not submitting PHI, facility or CT device identifiers

SURVEY DISTRIBUTION

SOCIAL MEDIA CONFERENCE PRESENTATIONS

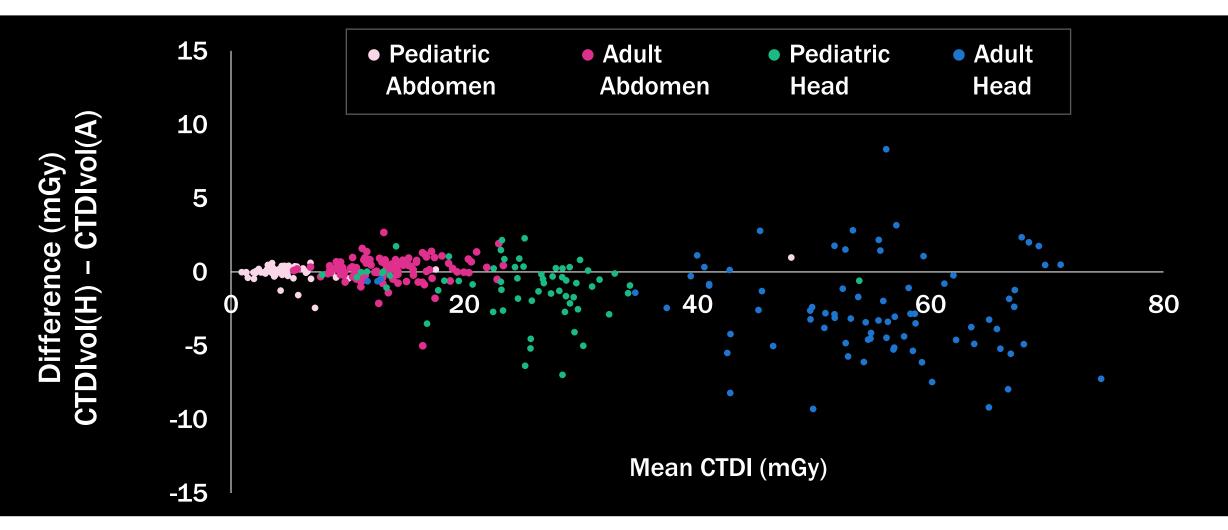
WORD OF MOUTH

PRELIMINARY RESULTS

AS OF 3/1/22

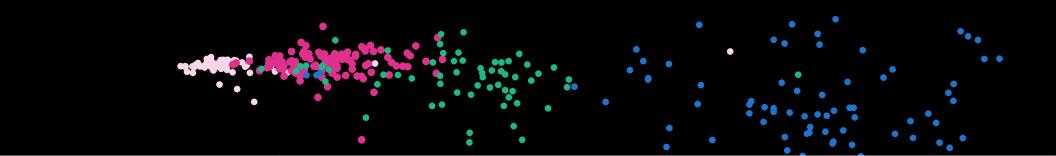
16 PHYSICISTS SUBMITTED 115 REPORTS WITH 326 CLINICAL PROTOCOLS

Scanner	Adult Head	Adult Abdomen	Pediatric Head	Pediatric Abdomen	Total
Siemens	31	33	25	24	113
GE	16	41	16	32	105
Canon	17	19	15	16	67
Philips	10	11	4	4	29
Other*	3	4	2	3	12
Total	77	108	62	79	326


*Other: Hitachi, United Imaging, Analogic

All scanners were manufactured between 2001-2021

RANGE OF SCAN TECHNIQUES


	Adult Head	Adult Abdomen	Pediatric Head	Pediatric Abdomen
kVp	120 - 140	110 - 140	80 - 120	70 - 140
Rotation time (s)	0.4 - 1.5	0.3 - 1.0	0.4 - 1.5	0.3 - 1.0
Pitch	0.29 - 1.75	0.51 - 1.75	0.3 - 1.4	0.5 – 3.0
Collimation (mm)	5.5 - 25.5	10 - 80	8 - 80	8 - 80
Displayed CTDI _{vol} (mGy)	12.4 - 73.8	5.4 - 32.9	6.9 - 58.5	0.9 - 41.9

AXIAL vs. HELICAL MEASUREMENTS

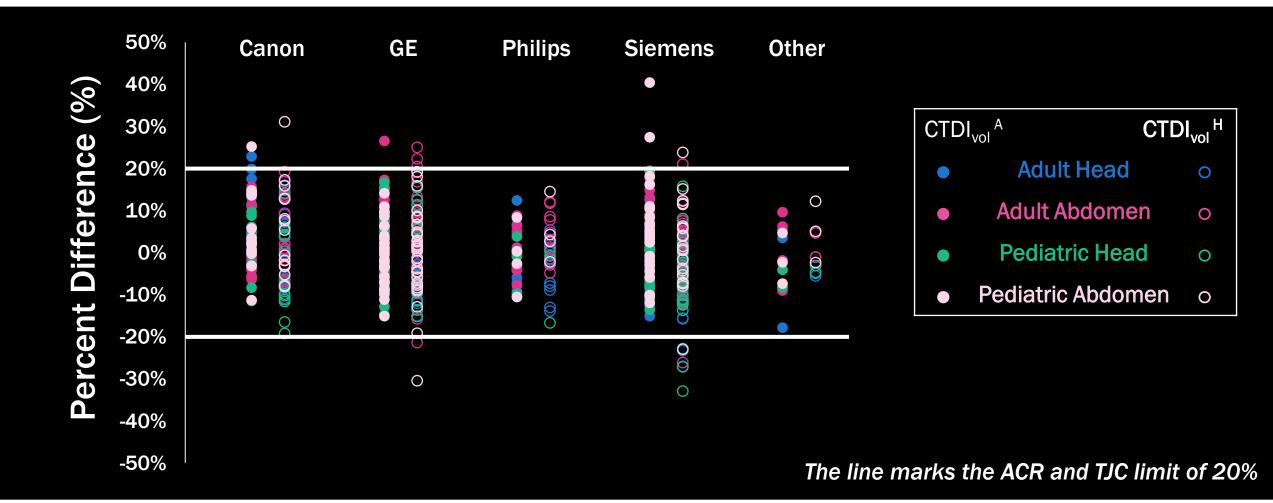
AXIAL vs. HELICAL MEASUREMENTS

Maan	Pediatric	Adult	Pediatric	Adult
Mean	Abdomen	Abdomen	Head	Head
			•	

Displayed CTDI _{vol} (mGy)	5.15	13.45	25.61	56.20
CTDI _{vol} ^H – CTDI _{vol} ^A (mGy)	-0.01	0.13	-1.05	-2.54

COMPARISON TO ORIGINAL STUDY

		Mean	Pediatric Abdomen	Adult Abdomen	Pediatric Head	Adult Head	All Protocols
National Generalizability Study (n=326)	Displayed CTDI _{vol} (mGy)	5.15	13.45	25.61	56.20	_	
	CTDI _{vol} ^H – CTDI _{vol} ^A (mGy)	-0.01	0.13	-1.05	-2.54	-0.76 (95% CI: -0.53, -0.23)	
	Original Feasibility	Displayed CTDI _{vol} (mGy)	4.6	14.2	27.4	57.4	_
Feasibility 	CTDI _{vol} ^H – CTDI _{vol} ^A (mGy)	0.0	0.6	0.1	0.4	0.30 (95% CI: -4.4,4.9)	


DISPLAYED VS. MEASURED CTDI_{vol}

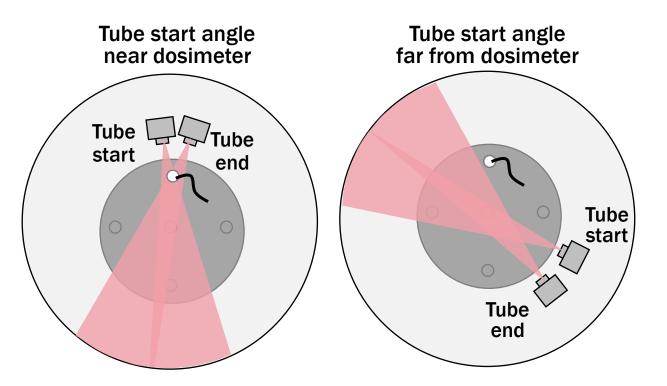
Mean	Pediatric Abdomen	Adult Abdomen	Pediatric Head	Adult Head
Displayed CTDI _{vol} (mGy)	5.15	13.45	25.61	56.20
Displayed CTDI _{vol} - CTDI _{vol} ^A (mGy)	0.13	0.09	-0.40	0.61
Displayed CTDI _{vol} - CTDI _{vol} ^H (mGy)	0.12	0.22	-1.45	-1.94

DISPLAYED VS. MEASURED CTDI_{vol}

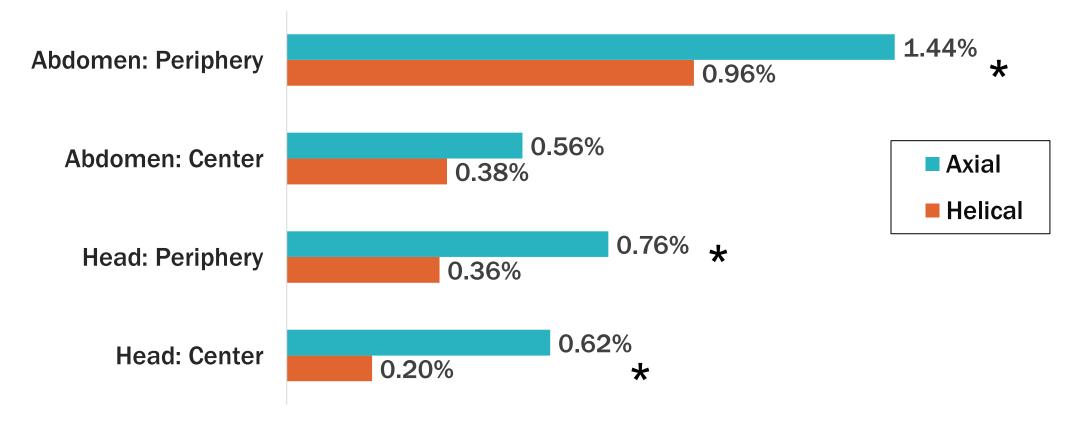
		Mean	Pediatric Abdomen	Adult Abdomen	Pediatric Head	Adult Head
National Generalizability Study	Displayed CTDI _{vol} - CTDI _{vol} ^A (mGy)	0.13	0.09	-0.40	0.61	
	Displayed CTDI _{vol} - CTDI _{vol} ^H (mGy)	0.12	0.22	-1.45	-1.94	
	Original	Displayed CTDI _{vol} - CTDI _{vol} ^A (mGy)	0.1	0.0	-0.1	-0.1
	Feasibility Publication	Displayed CTDI _{vol} - CTDI _{vol} ^H (mGy)	0.1	0.5	-0.1	-0.6

DISPLAYED vs. **MEASURED** CTDI_{vol}

NUMBER OF MEASUREMENTS EXCEEDING 20% DIFFERENCE FROM DISPLAYED CTDI_{VOL}

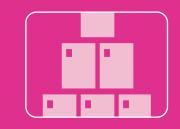

	Pediatric Abdomen	Adult Abdomen	Pediatric Head	Adult Head
Total number of protocols measured	77	107	62	79
Axial Method	3	1	0	1
Helical Method	4 (Includes 1 Axial)	6 (Includes 1 Axial)	3	2

NUMBER OF MEASUREMENTS EXCEEDING 20% DIFFERENCE FROM DISPLAYED CTDI_{VOL}


		Pediatric Abdomen	Adult Abdomen	Pediatric Head	Adult Head
National Generalizability Study	Axial Method	3	1	0	1
	Helical Method	4	6	3	2
Original Feasibility D	Axial Method	2	1	Ο	1
D Publication	Helical Method	0	0	0	0

PERIPHERAL MEASUREMENTS

- Peripheral measurements from a single axial slice are prone to variation due to variability in tube start location and beam overlap
- The helical method produced less measurement variability than the axial method



AVERAGE COEFFICIENT OF VARIATION (%)

* Indicates statistical significance (p<0.05)

CONCLUSIONS

421 clinical protocols from 7 CT manufacturers were evaluated by 22 investigators with a range of scan techniques: 0.3-1.75 pitch, 5.5 - 80 mm collimation, 80-140 kV, 0.3-1.5s rotation time.

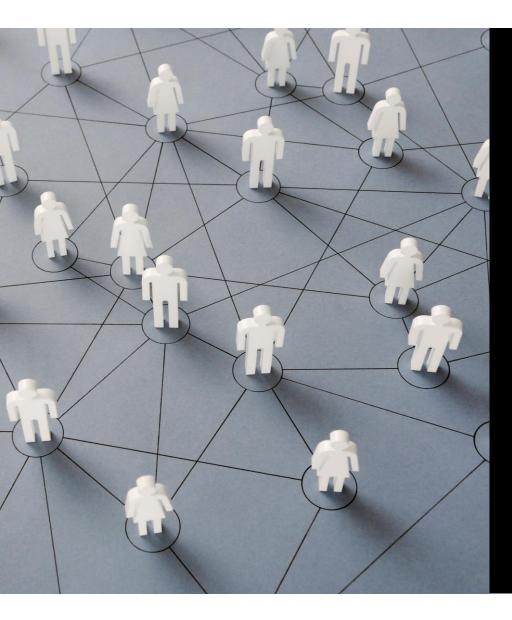
Difference between axial and helical measurements was greater in the generalizability study than in the feasibility study (-0.76 mGy vs 0.30 mGy). However, mean difference was less than 1 mGy.

Helical CTDI measurements exceeding 20% difference from displayed CTDI_{vol} was higher in the generalizability study than in the feasibility study (13/326 vs 0/95). However, this includes less than 4% of the protocols, possibly due to variation in scan range.

CAVEATS

- Not yet accepted as a measurement methodology by the ACR
- Potential option in the future if supported
- Option for annual surveys in unaccredited scanners

NEXT STEPS?


Complete data collection, analyze all submissions. Discuss the need to investigate any remaining variables.

Publish study findings for public review and commentary

Continue communication with ACR to identify if results are acceptable

ACKNOWLEDGEMENTS

Helical CTDI Generalizability Study

Study participants who submitted data

Research Team:

- Dustin Gress
- Stephanie Leon
- Bryan (BC) Schwarz
- Izabella Barreto
- Robert (Bob) Kobistek
- Chad Dillon
- Jim Tomlinson
- Mahadevappa Mahesh
- Dina Hernandez

Original Helical CTDI Feasibility Study

Co-Authors:

- Stephanie Leon
- Robert (Bob) Kobistek
- Edmond Olguin
- Zhongwei Zhang
- Izabella Barreto
- Bryan (BC) Schwarz

THANK YOU

Izabella.Barreto@radiology.ufl.edu https://medphysics.med.ufl.edu/ Twitter: @BarretoPhd We invite you to add your measurements to our study

https://bit.ly/3v3onjH

