Pre-Operative Linac Based Breast Radiosurgery

Sua Yoo, PhD – Associate Professor Department of Radiation Oncology Duke University Medical Center

Preoperative partial breast radiosurgery (SBRT)

🕔 DukeHealth

Uisclosure	Preoperative partial breast radiosurgery (SBRT)
• No conflict of interest	 Edibility criteria: Age>= 55yr with cT1N0, noninvasive, tumor <= 2cm, biopsy Phase I: Dose escalation study (32 patients. Started in 2007) 8 patients at 15Gy, 8 patients at 18Gy, and 16 patients at 21Gy To determine the maximum tolerated dose of single-dose partial breast irradiation based on toxicity Phase II: Evaluation of single-fraction treatment (100 patients. Finished in 2022) 21Gy → modified to SIB 15Gy to PTV_CTV and 21Gy to PTV_GTV To determine rate of good/excellent cosmesis Single fraction
	Horton et al – RedJ2015

Learning objectives

- (1) To review current practice of breast SBRT and APBI.
- (2) To learn treatment planning and delivery techniques for breast SBRT and APBI using Linac, GammaPod and Proton.

(3) To improve efficiency, accuracy and safety though experience.

Immobilization and CT/MRI simulation Planning CT MRI Image: Comparison of the state of

Challenge! Different immobilization devices make the breast shape different **Solution!** All patients have a biopsy marker (clip) at the tumor location.

Image registration: Align CT clip to MR clip, and confirm with soft tissue pattern.

Use constraints – updated phase II

- Prescription: SIB. Single fraction. 15Gy to PTV_CTVeval and 21Gy to PTV_GTVeval
- Target coverage
- CTV: V100% (100% of 15Gy) >= 95%
- PTV_CTVeval: V95% (95% of 15Gy) >= 90%
- PTV_GTVeval: V95% (95% of 21Gy) >= 95%
- OAR constraints
- Ipsilateral breast: V50% <= 30%
- Contralateral breast: Dmax <= 2.1 Gy
- Lungs: Dmean <= 3.6 Gy
 Heart: Dmean <= 1.5 Gy
- Heart: Dmean <= 1.5 Gy
 Chest wall: D20cc <= 16.3 Gy
- Skin dose: Dmax <= 21Gy, D1cc <=14Gy, D10cc <= 9Gy

Structures

· Biopsy clip

- GTV (CT and MR combined)
- CTV= GTV + 1.5cm; exclude 5mm from skin surface;
- Skin (3mm layer);
- chestwall; Lt/Rt breast; Rt/Lt lung; heart;

Phase I and Phase II

• PTV= CTV+0.5cm; PTV_Eval to exclude chestwall and 5 mm from skin surface

Modified Phase II SIB

- PTV_GTV=GTV+0.5cm; PTV_GTVeval to exclude chestwall and 5mm from skin surface
- PTV_CTV= CTV+0.5cm; PTV_CTVeval to exclude chestwall and 5mm from skin surface

😻 Planning – Limited beam angles

- 4 to 7 beams for IMRT
 - Limited beam angles to
 - avoid posterior beams
 - avoid contralateral breast
 - minimize heart exposure

	dosimetric parameters ± su			NC" IMRT CO, and V		1) VMAT
	in the second	3D CRT	IMRT _{NC}	IMRT _{CO}	VMAT	/
CTV	V _{27%} HI	99.8±0.4	99.5±0.6*	99.5±0.6*	99.5 ± 0.6* 1.11±0.04***	Good OAR sparing
	CI	1.05±0.02 1.56±0.27	1.07±0.04* 1.42±0.32	1.07±0.03* 1.44±0.30	1.11±0.04*+ 1.60±0.32	Poor HI, poor CI
PTV	Van	98.5±1.4	96.3±2.0*	96.5±1.5*	96.4±1.8*	() () () () () () () () () () () () () (
	V _{95%} HI CI	1.05±0.02 1.04±0.17	1.08 ±0.05* 0.95±0.20	1.07±0.04*	1.12±0.02***	2) IMRT
Skin		1.04±0.17 45.9±7.1	0.95±0.20 41.9±5.9*	0.96±0.21 43.8±6.5	1.07±0.22 ^{†‡} 46.3±7.42 ^{†‡}	,
Skin	D _{10 cm} ³ (%) D _{1 cm} ³ (%) D _{max} (%)	43.9±7.1 72.9±9.6	41.9±3.9 59.2±10.3*	43.8±0.5 61.1±11.9*	40.3±7.42* 64.2±11.7*7	Good target coverage
	D _{max} (%)	86.5±6.7	73.7±11.5*	74.3±12.1*	76.3±12.5*	Good skin sparing
ILB	V 2054 (%)	28.5±8.5	27.0±7.8*	26.4±8.3*	23.5±7.5***	
	V _{50%} (%) V _{100%} (%)	15.3±5.3 4.3±1.6	14.3±3.9 3.8±1.3*	14.8±5.5 3.9±1.4	14.1±5.6*1 4.4±1.9*1	3) non-coplanar IMRT
	D _{1%} (%)	103.7±1.8	103.9±2.5*	104.0±2.3*	105.6±2.8*	
Heart	D _{10cm} ³ (%)	2.5±1.7	1.8±1.6*	1.6±1.4*	1.3±1.1***	Slightly better for skin
CB	D _{10cm} ³ (%)	1.0±0.5	0.7±0.3*	0.8±0.3**	0.6±0.2**	sparing than coplanar
ILL	D _{10cm} ³ (%)	11.4±8.3	13.2±10.8	11.8±9.8	9.6±9.9**	sparing than copianai
Ribs	D _{max} (%)	33.6±33.0	34.3±36.6	33.7±35.8	30.4±36.6*I	
Dose fall off	V 50%/V 100% of ILB	3.7±0.8	3.9±0.8	4.0±1.1	3.3±0.8*TI	
Deli	ivery time (min)	11.0±1.5	9.7±1.0*	8.3±1.1**	7.0±1.0***	

	Ver. (cm)	Lng. (cm)	Lat. (cm)	Vector (cm)
5) Post-tx shift	-0.17±0.23	-0.08±0.14	-0.02±0.16	0.27±0.24
-	irection due to ro t vertically found			
Challenge! 1.1cm shif				7
Challenge! 1.1cm shif				7

U Efficiency – (d) Treatment delivery
(d) Treatment delivery (e) beam-on time (=MU/DR)
(f) Others;
 Average ~ 12 min = beam-on time + beam preparation time
 Improved beam-on time: 600 MU/min ~ 8 min vs FFF 1400 MU/min ~ 3 min
 Improved beam preparation: non-coplanar plan ~ 10 min vs coplanar plan ~ 4 min

• Mid-tx imaging added ~ 2 min

Summary

- Preoperative single fraction partial breast radiosurgery using Linac.
- Why preoperative? \rightarrow small target volume.
- MRI utilized to identify the tumor.
- Static coplanar IMRT.
- · Beams set to avoid contralateral breast and to minimize heart exposure.
- Skin sparing achieved through optimization.
- Biopsy clip is used to localize the target during IGRT.
- Improvements made through experience for efficiency, accuracy and safety.

U Efficiency – Summary				
	IP. Set 1.1 P. Set 1.1 12/0 14/0			
Initial Pre-tx 2D2D 3D 7.4 min 14.6 min	Pre-tx 2D2D 4.8 min Beam-on: 4.8 min Others: 6.9 min	Post-tx 2D or 3D 2.5 min		
100 80 1 Tot	al time (Ave. = 40.7 ± 14.7 min)			
Amman				
1		⁵⁰ Yoo et al – J or radiosurgery and SBRT 2020		

🜷 Acknowledgement – Duke RadOnc Breast Team

Physicians

Janet K Horton, MD – ex Pl Rachel Blitblzau, MD, PhD – Current Pl Susan McDuff, MD

Physicists

Jennifer O'Daniel, PhD Yunfeng Cui, PhD Fang-Fang Yin, PhD **Research nurse** Eileen Duffy, RN

Dosimetrists Leigh O'Neill, RT, CMD Suzanne Catalano, RT, CMD

Treatment process

Improvements made through experience!

- 1) Efficiency improved.
 - Total treatment time reduced ~ 18 min.
 - Isocenter at GTV → CT0: ~ 4 min saved.
 - Plans with non-coplanar → coplanar
 - ~ 3 min saved before treatment delivery
 - ~ 6 min saved during treatment delivery.
 600MU/min → 1400MU/min with FFF: ~ 5 min saved for beam-on time
- 2) Accuracy and quality improved.
 - Oblique orthogonal kV images: improve clip visibility
 Mid-tx kV imaging: correct patient motion during treatment
- 3) Safety improved.
 - Collision free with iso at CTO and coplanar beams.

