APBI using Proton Therapy

Falk Poenisch, PhD

AAPM 2022 SAM Joint Imaging Therapy Educational Course: Advances in Breast Cancer Diagnosis and Treatment: Mammography, Breast Biopsy, SBRT, APBI

Outline

1) Background

2) CT Simulation

3) Planning Technique

4) Discussion

Background

- RTOG 0413 trail: accelerated partial breast irradiation (APBI) compared to whole breast irradiation (WBI) for early-stage breast cancer.
 - similar 10 year recurrence rate: 4.6% vs 3.9%[‡]
- WBI late effects: fibrosis, shrinkage, edema and skin thickening
- APBI has the potential of improved cosmesis
- APBI delivers radiation directly to the tumor resected cavity that is at highest risk for recurrence and limits the dose to the surrounding healthy breast tissue
- APBI is more convenient for the patient due to the shorter treatment course of 5 to 8 days

[‡] Vicini etal Lancet. 2019 Dec 14; 394(10215): 2155–2164.

Background

- Forms of APBI:
 - Brachytherapy
 - 3D conformal radiotherapy (3DCRT) (non-invasive and higher dose homogenity)
 - Proton (e.g. passive scattering)

More challenging planning technique over PBS

Pros

Background

Comparing Proton APBI vs Photon 3DCRT

- less normal breast tissue irradiated
 - less lung and heart dose

Cons - More acute skin toxicity

- More rib pain and fractures

Improving planning technique

Making Cancer History®

RTOG 2009-0818

• Primary Objective:

- assessing the cosmesis and toxicity of partial breast irradiation using proton beam irradiation

- Eligibility:
 - stage 0, I, II with < 3cm
 - negative surgical margins
 - lumpectomy cavity must be clearly delineated
 - cavity volume <30% of whole breast
- Prescription:

34 Gy in 10 fraction BID, > 6 hours apart

Simulation: Arm position

- Patient in supine position
- Vaclok on acrylic board with variable slant (0, 5, 10, or 15 deg)

7

• Not working for lateral tumors

- Breast tissue stretched out across chest wall
 more tangential beam
- May reduce distance between tumor and chestwall
- Stable and reproducible setup

Simulation: Marking

- Midline (red)
- Marked Isocenter (blue)
- Surgical scar (wire)
- BBs on skin pigments (Beekley non-metalic)
- BBs on nipple (Beekley non-metalic)
- Surgical clips (if present, e.g. Biozorb)

Making Cancer History®

RTOG 2009-0818

Making Cancer History®

RTOG 2009-0818

- Normal Breast (Ipsilateral Breast)
- Uninvolved Breast (Normal Breast CTV)
- Heart
- Ipsilateral Lung
- Contralateral Lung
- Contralateral Breast
- Skin 2mm
- Skin 5mm

Making Cancer History[®] Passive Scattering Devices

Courtesy: A. Smith, UTMDACC

Range Modulator Wheel (function of energy, field size)

Aperture collimator:

- brass,
- 3 sizes (e.g. <u>18x18</u> cm)
- Thickness: 2cm
- Number, typical 2 pieces

Compensator

- Acrylic plastic
- Smooth surface
- Thickness variable 2-15 cm

Planning: Beam Angle Selection

- Contradicting goals: skin sparing vs robust plan
- Maximize hinge angle tangential beams
- Robust plan has en-face beam (but there is only 1 angle)
- Compromise between skin sparing and robustness.

Planning: Beam Angle Selection

- Use 3 fields!
- First, create en-face beam (in 3D) (couch kick required)

 add 3 more beams surrounding the en-facebeam and "maximize" hinge angle while maintaining the following limits:

Planning: Beam Angle Selection - Limits

Making Cancer History[®]

Grazing angle
 ~30 deg

Visualize in Eclipse:

Making Cancer History[®]

Planning: Beam Angle Selection - Limits

2. Avoid flash to arm or contralateral side

18

Planning: Beam Angle Selection - Limits

- 3) Snout position in TPS < 20 cm Airgap < 15 cm (ensures lateral target coverage)
- 4) Patient-Geometry-Check-software, clearance: 6-10 cm

Making Cancer History[®]

Planning: Beam Line Parameter

- No proximal margin (to limit skin dose)
- Distal margin[‡]: DM = Range x 3.5% + 0.1 cm
- Compensator smear (to account for setup uncertainties):
 1.0 cm for arms down (higher variability) and 0.7 cm for arms up
- Aperture margin are between 0.7 and 1.0 cm depending on how much coverage to the PTV is wanted

Making Cancer History®

- Orthogonal X-ray
- BBs & wires placed on skin, but removed for treatment
- A 10 patient study [‡] average deviation over 100 Tx: 0.3-0.5 cm (1σ=0.2 cm)

IGRT

[‡]Strom *et al.* Practical Radiation Oncology (2015) 5

Patient Outcome

Clinical outcome of the first 100 patients[‡]

- No acute or late grade 3 skin toxicity
- Acute dermatitis (week 6): 58% grade 1, 11% grade 2
- Hyperpigmentation (week 6): 45% grade 1 (<10% area), 2& (>10% area)
- Physicians and patient cosmesis 83% and 93%
- Late skin effect (>18 month); spider veins ~35%

→ - dosimetric threshold 3525 cGy to 1 cm³ of "2-mm" skin \equiv 2.5 cm²

- at least 3 fields

• No patient experienced fat necrosis, fibrosis, infection or breast shrinkage

Patient Outcome

Cosmesis outcome selected patients after 1 year[‡]

• Hyperpigmentation in the irradiated field

[‡] Strom *et al.* Practical Radiation Oncology (2015) 5, e283-e290 MD ANDERSON CANCER CENTER

Making Cancer History[®]

Photon vs Proton

MD ANDERSON CANCER CENTER

Passive (3 fld) vs Scanning (1 fld)

Making Cancer History[®]

- Skin dose is lower for scanning beam plan
- Uninvolved breast dose is lower for passive plan

MD ANDERSON CANCER CENTER

Costs of Proton Partial breast

 There has been many publication regarding cost effectiveness advocating the use for proton treatment, e.g. Ovalle [‡]

Making Cancer History[®]

- It was found that the costs of proton treatment is competitive with brachytherapy and standard FiF treatment
- The most expensive method was WBI IMRT

[‡]Ovalle et al. IJROBP 95 (1), (2016)

Making Cancer History®

Acknowledgements

Dr. E. Strom., T. Williamson, CMD

and PTCH Physics Group, Physicians, Dosimetrists and Therapist

Making Cancer History®

Thank you very much for listening.

fpoenisch@mdanderson.org