CT Simulation Optimization Strategies in Radiation Oncology

Timothy P. Szczykutowicz PhD, DABR

Associate Professor

University of Wisconsin Madison Departments of Radiology, Medical Physics and Biomedical Engineering

@Prof_TimStick
Caution, these slides may be edited before I give the talk, but in large part this content is what you will see me presenting at the meeting. Thanks!
@Prof_TimStick’s Rad Onc Naughty list

- Using fixed mA because you are afraid of changing CT number
- Not using CT contrast agents
- If you are using contrast agents, using fixed time delays or fixed contrast bolus amounts
- Believing CT number can be trusted at fixed kV...
@Prof_TimStick says out of Reconstruction Kernel, Beam energy, Bowtie filter size and composition, and Patient positioning within the gantry, *beam energy* will have the biggest affect on CT number.

@Prof_TimStick says if you don’t want to worry about beam energy being changed by your CT scanner, turn off your scanner’s automatic beam energy selection AEC (CarekV, KVAssist, SurekV)

outline

• CT Number 101
• AEC in CT
What is CT number?
• Pixels represent attenuation
• Places with low attenuation are dark
• Places with high attenuation are bright
Air is bad at stopping x-rays, so it gets a low attenuation value and a corresponding low HU number.

Oral contrast is good at stopping x-rays, so it gets a high attenuation value and a corresponding high HU number.
CT scan of an extremely fit 27 year old male, current Associate Professor of Radiology
This makes HU tell us how attenuating something is relative to water.

This makes little changes into big changes.

$$HU = \frac{\mu - \mu_{\text{water}}}{\mu_{\text{water}}} \times 1000$$
CT number changes with vendor

Difference between Toshiba and Siemens extremes was ~ 40 HU!!!!
In conclusion, our study shows that Hounsfield unit measurements of unenhanced soft tissues in the abdomen vary between MDCT scanners of two different manufacturers. In view of our results and those of prior investigators, we think that established absolute Hounsfield unit thresholds that are currently used for CT characterization of renal lesions and adrenal nodules on unenhanced CT can result in mischaracterization of these lesions. We propose that, for tissue characterization on unenhanced CT that depends on absolute CT attenuation values, either the use of dedicated calibration phantoms or scanner- and convolution kernel–specific Hounsfield unit thresholds may need to be investigated for the modern MDCT scanners in clinical use. For renal and adrenal masses, the risk of misdiagnosis is greater for a malignant than for a benign lesion. Although Hounsfield characterization of tissues remains and will continue to be an important and effective decision-making tool in clinical CT, it is important for radiologists to be aware of these variations. Caution is thus advised when using absolute CT numbers to characterize masses on unenhanced CT and, if appropriate and warranted, further characterization using other methods should be considered. As with any other test result, CT Hounsfield unit value measurements should not be interpreted in a vacuum. Clinical data, together with other morphologic characteristics and the relative risk-benefit and cost of additional workup, must be considered in individual cases.

CT number changes with kV
HU = \frac{\mu - \mu_{\text{water}}}{\mu_{\text{water}}} \times 1000

• We normalize attenuation coefficient to that of water.
• This does not take away energy dependence of CT number!

\mu(E) = k_1 \times PE(E) + k_2 \times CE(E)

- Photoelectric effect depends on energy
- Compton Effect depends on energy
Stuff with fat in it increases HU with increasing kV

Most other materials decrease HU with kV
As kV increases, CT # drops for iodine.

- 80 kV
- 100 kV
- 120 kV
- 140 kV

CT number changes with keV
HU changes with keV
- At some keV HU overlap, at others they do not!
- Whenever you are reading a monochromatic dual energy/spectral image, you are reading HU that will depend on keV!!!
CT number changes with position
Even on the same scanner, just moving the patient up/down changes CT number!

<table>
<thead>
<tr>
<th>Position</th>
<th>Anterior</th>
<th>Noise</th>
<th>Anterior</th>
<th>Noise</th>
<th>Anterior</th>
<th>Noise</th>
<th>Anterior</th>
<th>Noise</th>
</tr>
</thead>
<tbody>
<tr>
<td>-10 cm</td>
<td>10±13</td>
<td>17±2</td>
<td>23±9</td>
<td>28±3</td>
<td>-2±1</td>
<td>9±1</td>
<td>0±9</td>
<td>25±2</td>
</tr>
<tr>
<td>-6 cm</td>
<td>12±6</td>
<td>15±4</td>
<td>13±7</td>
<td>21±1</td>
<td>-2±2</td>
<td>8±1</td>
<td>-16±3</td>
<td>15±1</td>
</tr>
<tr>
<td>-4 cm</td>
<td>0±12</td>
<td>13±3</td>
<td>6±4</td>
<td>15±1</td>
<td>-2±2</td>
<td>9±1</td>
<td>-8±5</td>
<td>14±2</td>
</tr>
<tr>
<td>0 cm</td>
<td>8±9</td>
<td>13±3</td>
<td>-9±8</td>
<td>12±1</td>
<td>1±1</td>
<td>9±1</td>
<td>-10±6</td>
<td>12±2</td>
</tr>
<tr>
<td>4 cm</td>
<td>12±9</td>
<td>12±1</td>
<td>-7±3</td>
<td>12±2</td>
<td>1±2</td>
<td>11±1</td>
<td>-15±5</td>
<td>12±3</td>
</tr>
<tr>
<td>6 cm</td>
<td>13±4</td>
<td>13±2</td>
<td>-13±3</td>
<td>12±2</td>
<td>2±2</td>
<td>12±1</td>
<td>-20±5</td>
<td>12±3</td>
</tr>
<tr>
<td>10 cm</td>
<td>19±12</td>
<td>20±2</td>
<td>-15±6</td>
<td>11±1</td>
<td>5±1</td>
<td>15±1</td>
<td>-23±2</td>
<td>13±2</td>
</tr>
</tbody>
</table>

Highlight key

- 5-9 HU change
- 10-19 change
- >=20 change

So my ROI has a high SD, can I trust it...?
Can we trust a measurement where the noise is almost equal to the mean...?
Over ~16 mm² our uncertainty goes down to ~4 HU

Don’t get confused here by the difference between the standard error, which is a measure of the variation in sample mean, and the standard deviation, which when measured inside an ROI on a PACS system is reporting the pixel-to-pixel variation of measurements within an ROI.

Ideal value is 20 HU
I changed reconstruction filter/kernel.... Does that mean I can’t trust ROI measurements?
Changing kernel will change noise, spatial resolution, noise texture, and possible introduce edge enhancement.
Changing kernel therefore only changes CT number for really small things...things that get blurred totally away in small ROI measurements.
So even though lower resolution kernel blurs edges, mean CT number over region not changed!
Protocol Optimization Considerations for Implementing Deep Learning CT Reconstruction

Timothy P. Szczukutowicz, PhD1,2,3, Brian Nett, PhD4, Lusik Cherkezyan, PhD4, Myron Pozniak, MD1, Jie Tang, PhD4, Meghan G. Lubner, MD1, Jiang Hsieh, PhD4

Keywords
deep learning, image quality, protocol optimization, reconstruction

OBJECTIVE. Previous advances over filtered back projection (FBP) have incorporated model-based iterative reconstruction. The purpose of this study was to characterize the latest advance in image reconstruction, that is, deep learning. The focus was on applying a model-based iterative reconstruction framework to deep learning-generated images.

In grouping B, in which only combinations at equal doses were considered, slice thickness or reconstruction algorithm changes were not found to produce statistically significant differences in mean CT numbers.

TABLE 5: CT Number Results: Grouping B

<table>
<thead>
<tr>
<th>Material</th>
<th>CT Number Over All Combinations (HU)</th>
<th>4 mGy</th>
<th>8 mGy</th>
<th>16 mGy</th>
<th>4 mGy</th>
<th>8 mGy</th>
<th>16 mGy</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polyethylene</td>
<td>–94.57 (–94.69, –94.02)</td>
<td>–94.89 (–94.98, –94.62)</td>
<td>–95.06 (–95.28, –95.00)</td>
<td>.18</td>
<td>> .99</td>
<td>> .99</td>
<td>.46</td>
<td></td>
</tr>
<tr>
<td>Water</td>
<td>3.76 (3.65, 3.81)</td>
<td>2.59 (2.43, 2.76)</td>
<td>2.54 (2.44, 2.55)</td>
<td>> .99</td>
<td>.97</td>
<td>> .99</td>
<td>> .99</td>
<td></td>
</tr>
<tr>
<td>Acrylic</td>
<td>123.06 (122.62, 123.45)</td>
<td>122.81 (122.69, 122.99)</td>
<td>123.49 (123.41, 123.75)</td>
<td>.33</td>
<td>> .99</td>
<td>> .99</td>
<td>> .99</td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>–990.73 (–991.23, –990.37)</td>
<td>–991.27 (–991.54, –991.12)</td>
<td>–991.71 (–991.96, –991.61)</td>
<td>.91</td>
<td>> .99</td>
<td>> .99</td>
<td>> .99</td>
<td></td>
</tr>
<tr>
<td>Bone</td>
<td>903.74 (903.53, 903.86)</td>
<td>905.95 (905.74, 906.12)</td>
<td>904.55 (904.35, 904.74)</td>
<td>.98</td>
<td>> .99</td>
<td>> .99</td>
<td>> .99</td>
<td></td>
</tr>
</tbody>
</table>

Note—Grouping B contained three groups of 30 combinations each because dose was used to separate combinations. All measurements were acquired at 120 kV. In grouping B, results are sorted by dose level to show there are no statistically significant differences between reconstruction algorithms for our sample size. For each dose level, all combinations of the following reconstruction algorithms and slice thicknesses were tested: filtered back projection; 20% and 50% adaptive statistical iterative reconstruction; low, medium, and high-level deep learning image reconstruction; and 0.625-, 1.25-, 2.5-, 3.75-, and 5-mm slice thicknesses.

*Values are median with 25th and 75th percentiles in parentheses for all dose levels.
@Prof_TimStick’s Actionable information

• Don’t trust CT number when scanners change
• Don’t trust CT number when kV changes
• Don’t trust CT number when position changes
• ROI noise equal to the mean...don’t worry, you can usually trust the measurement
• Changing reconstruction kernel/filter doesn’t change CT number
• CT Number 101
• AEC in CT
I don’t need AEC, all my images look fine. Maybe a few bariatrics are noisy.
I don’t need AEC, all my images look fine. Maybe a few bariatrics are noisy.

Well, noise will double in your patients with every 8 cm they grow in diameter, or over a single scan if you use constant mA!
I don’t need AEC, all my images look fine. Maybe a few bariatrics are noisy.

So if you are “getting away” with a single mA, then 100% guaranteed you are making pretty pictures for smaller patients in excess of what you need.

Well, noise will double in your patients with every 8 cm they grow in diameter, or over a single scan if you use constant mA!
• All Vendor’s AEC systems operate like this

- AEC target mAs/noise
- Importance of iodine in the exam
- Estimate of patient size (CT localizer radiograph)

Black box

mA(z, theta)

kV

Z axis mA modulation
angular mA modulation
At this level we are just about to hit our mA max, noise still reasonable

At this level we have hit our mA max, noise increases a lot!

“The CT Handbook: Optimizing Protocols for Today’s feature-rich scanners”
By Tim Szczykutowicz. Medical Physics Publishing 2020
• You will find that mA limits are reached
 – Within a single patient exam
 – Over a certain patient size
Two scanners shown here, one is having issues maxing out, one is minning out.
• For what patient sizes will your protocol hit an mA limit?
 – We can answer by looking over CTDIvol data as a function of patient size and looking for “flat spots”
 • But this is using a trial and error approach, can we do this prospectively?
Providing constant image noise/quality means you have to off-set the Beer-Lambert law of exponential x-ray attenuation as a function of patient size.

- GE AEC operates like this (rule of thumb, every 4 cm of soft tissue increase \rightarrow dose doubling)

Overview of AEC in MDCT

![Graph showing CTDIvol vs. AP + Lat (mm) Ave = 626]

- CTDI$_{vol}$ fit
- CTDI$_{vol}$ data

- 8 cm Double CTDI$_{vol}$
• Providing constant dose means you have to scale scanner output to give a patient a constant ratio of energy/mass (i.e. dose).
 – I don’t think any vendor does this
 – This would be like setting your AEC according to the normalized dose curve shown in AAPM Reports 204/220

Interesting side note, if we changed dose by NDC prescription, images would get noisy faster as a function of patient size w.r.t. vendor AEC systems
“The CT Handbook: Optimizing Protocols for Today’s feature-rich scanners”
By Tim Szczykutowicz. Medical Physics Publishing 2020
"The CT Handbook: Optimizing Protocols for Today’s feature-rich scanners"
By Tim Szczykutowicz. Medical Physics Publishing 2020
Not all CT makes and models have the same AEC behavior, characterize your specific scanner

- Use historical patient data (plots of CTDIvol versus pt size)
- Use various sized phantoms

mA plateaus are bad

- Over entire patient size ranges
- Within a single patient’s scan
Okay okay okay, I’ll use AEC. What about when I use IV contrast?
If every one gets 125 mls...big people see less enhancement.
A Metric for Quantification of Iodine Contrast Enhancement (Q-ICE) in Computed Tomography

Patient Cohort
- <60kg, 120kV
- 60-112kg, 120kV
- 60-112kg, 140kV
- >112kg, 120kV
- >112kg, 140kV

Liver Contrast Enhancement (HU) vs Patient Weight (kg)
Typical IV contrast prescription. Most sites around the world will have increases in I contrast with weight.

Example CTPA (PE) contrast prescription

<table>
<thead>
<tr>
<th>IV Contrast Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient weight < 140 kilos. (Less than 300 lbs.)</td>
</tr>
<tr>
<td>100 mL Iohexol (Omnipaque) 300 MG/ML @ 5 mL/sec</td>
</tr>
<tr>
<td>10 mL Sodium Chloride 0.9% @ 5 mL/sec</td>
</tr>
<tr>
<td>Patient weight 140-160 kilos. (300-350 lbs.)</td>
</tr>
<tr>
<td>100 mL Iopamidol (Iovue 370) 370 mgI/ml @ 5 mL/sec</td>
</tr>
<tr>
<td>10 mL Sodium Chloride 0.9% @ 5 mL/sec</td>
</tr>
<tr>
<td>Patient weight > 160 kilos. (More than 350 lbs.)</td>
</tr>
<tr>
<td>150 mL Iopamidol (Iovue 370) 370 mgI/ml @ 5 mL/sec</td>
</tr>
<tr>
<td>10 mL Sodium Chloride 0.9% @ 5 mL/sec</td>
</tr>
</tbody>
</table>

Example routine parenchymal phase torso contrast prescription

<table>
<thead>
<tr>
<th>Patient Weight (lbs)</th>
<th>Contrast Volume (ml or cc)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130 and less</td>
<td>80 (minimum amount to load)</td>
</tr>
<tr>
<td>140</td>
<td>86</td>
</tr>
<tr>
<td>150</td>
<td>92</td>
</tr>
<tr>
<td>160</td>
<td>98</td>
</tr>
<tr>
<td>165</td>
<td>101</td>
</tr>
<tr>
<td>170</td>
<td>104</td>
</tr>
<tr>
<td>175</td>
<td>107</td>
</tr>
<tr>
<td>180</td>
<td>110</td>
</tr>
<tr>
<td>190</td>
<td>116</td>
</tr>
<tr>
<td>200</td>
<td>122</td>
</tr>
<tr>
<td>210</td>
<td>128</td>
</tr>
<tr>
<td>220</td>
<td>135</td>
</tr>
<tr>
<td>230</td>
<td>141</td>
</tr>
<tr>
<td>240</td>
<td>147</td>
</tr>
<tr>
<td>250 and larger</td>
<td>150 (max amount to load)</td>
</tr>
</tbody>
</table>
• Just due to beam hardening, we see a HUGE reduction in CT number with increasing patient size
 – -5 HU per cm of WED!
Special considerations for large patients:

- CNR down from vendor increasing noise via AEC
- Contrast down from beam hardening
- Contrast down from less I density
- Contrast down from kV up

Graphs and equations:

- Phantom Diameter [mm]
- Contrast down from beam hardening
- CNR down from vendor increasing noise via AEC
- Contrast down from less I density
- Contrast down from kV up

Graphs showing:

- Effects of iodine concentration and WED (cm) on HU
- Time after the start of injection and Hepatic Enhancement (HU)
- Variation of SIDC [mm] with respect to kV
- Iodine concentration [10mg/mL] and WED (cm)

Equations:

- \[y = ax + b \]
- \[R^2 \]

Values:

- 0.65x + 582.12
- 5.46x + 466.48
- 5.09x + 394.22
- 4.83x + 343.68
@Prof_TimStick’s Actionable information

• Since we cannot change kV in rad onc, consider increasing IV contrast for larger patients and decreasing it for smaller patients
• If you cannot change kV or IV contrast volumes, consider using AEC quality targets to account for patient size
 • Decrease noise for larger patients
Thank You.

Feel free to contact me at tszczykutowicz@uwhealth.org

(at this AAPM meeting, we have a symposium with 2 radiologists and a CT tech later today, attend for more CT knowledge!)