Protocol development and MRI basics for the implementation of MRI in high dose rate brachytherapy
Ken-Pin Hwang
AAPM TG 303: MRI Implementation in HDR Brachytherapy
AAPM Annual Meeting, Washington, DC, July 12, 2022

Advantages of MRI in Cervical Cancer
T2-weighted imaging is optimal for differentiating tumor from normal tissue
- CT does not provide adequate contrast between tumor and normal tissue or organs-at-risk (OARs)
- Gynecologic tumors are often isointense relative to normal tissue
- Contrast-enhanced CT improves image quality, but tumor may still be isointense relative to healthy tissue
- Poor delineation of high-risk clinical target volume (HR-CTV) for radiotherapy
 - May reduce treatment efficacy

Differences from GEC-ESTRO
- Sagittal and coronal 2D T2 FSE made optional in favor of a 3D axial or oblique axial acquisition
- Optional DWI to aid in tumor delineation following EBRT-related treatment changes
- Optional FIESTA-C / CISS sequence for positive contrast in applicator channel
- Optional T1 in GEC-ESTRO not recommended for brachytherapy imaging

ABS-SAR Recommended MRI-guided Brachytherapy Protocols

<table>
<thead>
<tr>
<th>Series</th>
<th>Description</th>
<th>FOV (cm)</th>
<th>Slice Thickness (mm)</th>
<th>Gap (mm)</th>
<th>Matrix: Frequency Encoding</th>
<th>Matrix: Phase Encoding</th>
<th>Anatomic Coverage & Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sagittal or Sagittal-Oblique (T2-weighted)</td>
<td>3D T2 FSE or FRFSE</td>
<td>20–24</td>
<td>2–5</td>
<td>0</td>
<td>256</td>
<td>152–256</td>
<td>uterus, cervix, tumor, and applicator</td>
</tr>
<tr>
<td>Sagittal-Oblique (T2-weighted)</td>
<td>3D isotropic FRFSE</td>
<td>24–26</td>
<td>2–3</td>
<td>1–0</td>
<td>256–330</td>
<td>256–330</td>
<td>uterus, cervix, tumor, and applicator</td>
</tr>
</tbody>
</table>

T2w FRFSE MRI Applicator Appearance

Disclosures
Ken-Pin Hwang has received research support from GE Healthcare and Siemens Healthineers

Disclaimer:
We present specific examples of gynecologic imaging, but concepts are applicable to brachytherapy in general
Image Quality

Sequence parameters
- Sequence type
- FOV
- Matrix
- Bandwidth (F-W shift)
- Average (ROI)
- TR repetition time
- TE echo time
- Flip angle
- ETL

Image qualities
- Shift
- Resolution
- Speed
- Contrast
- Robustness against artifacts

Considerations for Brachytherapy
- Goal (IGEC-ESTRO, 2012)
 - Sufficient information about tumor/target extent, tumor/nontarget growth pattern and topography of pathoanatomical structures in three dimensions at the time of brachytherapy with the applicators in place

Challenges
- Application - metal reduce susceptibility effects
- Visualization of tumor anatomy - T2-weighted imaging
- Geometric accuracy
- Corrections, reduce shifts

Pros
- Robust against susceptibility
- Compatible with prep pulses (Fat Sat, Inversion)
- Time efficient k-space coverage
- Adjustable TE and TR for variety of contrasts
- Robust against susceptibility

Cons
- Violations:
 - Sufficient information about tumor/target extent, tumor/nontarget growth pattern and topography of pathoanatomical structures in three dimensions at the time of brachytherapy with the applicators in place
- Application - metal reduce susceptibility effects
- Visualization of tumor anatomy - T2-weighted imaging
- Geometric accuracy
- Corrections, reduce shifts

Matrix, FOV

Susceptibility

Susceptibility → \(\Delta f = \nu_B \Delta g \)
Typically expressed in \(\times 10^6 \) or ppm
Effects doubled at 3T!

Spin-echo RF pulse sequence: recovery of T2 relaxation effects

Why is this a problem?
Frequency encoding: Spatial gradients

Shift in frequency: violation of \(B_0 \) assumptions

Assumption:
- \(B_0 \) constant across FOV

Violations:
- \(\Delta B = \Delta f \) → distortion (\(\Delta g \)) in readout direction
- \(B_0 \) inhomogeneity → \(\Delta f = \nu_B \Delta B \)
- Spatial's mean magnetic field not perfectly uniform, \(\Delta B \) not constant across FOV

Susceptibility → \(\Delta f = \nu_B \Delta g \)
- Susceptibility of tissues, materials not uniform
- Composition and geometry of tissues, gases in patient

Chemical shift → \(\Delta f = \nu_B \Delta d \)
- Chemical composition not uniform
- \(\Delta g \) ppm -4 Hz at 1.5T, \(-220\) Hz at 3T
- Fat shift: 1-3ppm, 220 Hz at 1.5T, \(-440\) Hz at 3T

Gradient in Hz/mm will determine \(\Delta g \) for a given \(\Delta f \)
Shift in frequency: Mitigation

![Graph showing the relationship between gradient and FOV or pixel width.](image)

Why it reduces chemical shift and distortion:
Each millimeter spans a wider bandwidth, so shifts in frequency cause less shift in position.

Tradeoff: Increasing bandwidth reduces sampling time. This makes sampling faster but reduces SNR.
- BW: 2 = displacement / 4, SNR = 2

How high is “enough”?
- Rule of thumb: Expect double fat-water shift.
 - ~440 Hz at 1.5T, ~880 Hz at 3T

Also preferable to map frequencies, but such techniques are not turnkey

Ideally increase bandwidth to achieve desired tolerance

However, may be limited by SNR and/or scan time

There are other sources of errors!

3D Pulse Sequences (vs stack of 2D slices)

Examples of 3D FSE/TSE sequences include:
- CUBE (GE), SPACE (Siemens), VISTA (Philips), or 3D MVOX (Canon)

Advantages
- Phase encoding takes place in slice direction as well as phase encoding direction
 - No frequency shift distortion in PE or slice directions!
 - Allows for thinner slices, even isotropic acquisitions
 - Ideal for reformatting from single sequence, but in native plane they are generally lower resolution than 2D
 - Reconstruction determines reconstructed slice thickness – less “stair step” artifact than interpolation after recon
 - Enables gradient nonlinearity corrections in all three dimensions (3D GNL correction)

Disadvantages
- Time required to encode increased slices typically results in lower native plane resolution
- Contrast altered compared to 2D sequences – less of a concern for applicator reconstruction

Summary

MRI is preferred imaging modality for guidance of HDR brachytherapy
- General consensus around the use of T2-weighted FSE/TSE sequences

Susceptibility differences from applicators present challenge in designing protocols
- Spin-echo sequences refocus T2* decay and are necessary for T2-weighted imaging
- Gradients map frequency to position and are controlled by bandwidth and FOV

Slices selection and phase encoding

What about slice selection?
Similar relationship between BW and position, but can’t detect or measure

Can’t control pulse bandwidth (and often don’t know unless you ask vendor), but can use thinner slices
- Sharper resolution but also lower SNR
- Thinner slices (~3mm) also better for reconstruction

What about the phase encoding direction?
Phase encoding direction is immune to frequency shifts!

Why?
- Every phase encoded line is acquired at the same time from excitation. At echo time TE, spin phase is constant from line to line.

Distortions from gradient non-linearity

Assumption: G approximately linear across FOV

Reality: Distortion in every encoding direction

Mitigation:
- Reliant on vendor supplied corrections (image warping), activated in sequence settings (2D vs 3D correction)

Expect residual errors away from isocenter:

Thanks!

Contact:
- Ken-Pin Hwang
 - khwang@mdanderson.org
 - kwhang@mdanderson.org

References

- AAPM Task Group 303
- Contemporary image-guided cervical cancer brachytherapy: Consensus imaging recommendations from the Society of Abdominal Radiology and the American Brachytherapy Society
 - [PDF](#)
 - [PDF](#)

- Use of MR for image-guided Cervix Brachytherapy
 - SWAAPM Annual Meeting, April 2022

- MRI Principles & Quality Characteristics
 - AAPM Diagnostic Review Course, July 2022

- Chris Walker, Ping Hou

Image credits:
- 'spin-echo' pulse sequence diagram
 - [Image](#)

- [Image](#)

3D Pulse Sequences (vs stack of 2D slices)

- CUBE (GE), SPACE (Siemens), VISTA (Philips), or 3D MVOX (Canon)

Advantages
- Phase encoding takes place in slice direction as well as phase encoding direction
 - No frequency shift distortion in PE or slice directions!
 - Allows for thinner slices, even isotropic acquisitions
 - Ideal for reformatting from single sequence, but in native plane they are generally lower resolution than 2D
 - Reconstruction determines reconstructed slice thickness – less “stair step” artifact than interpolation after recon
 - Enables gradient nonlinearity corrections in all three dimensions (3D GNL correction)

Disadvantages
- Time required to encode increased slices typically results in lower native plane resolution
- Contrast altered compared to 2D sequences – less of a concern for applicator reconstruction

Summary

MRI is preferred imaging modality for guidance of HDR brachytherapy
- General consensus around the use of T2-weighted FSE/TSE sequences

Susceptibility differences from applicators present challenge in designing protocols
- Spin-echo sequences refocus T2* decay and are necessary for T2-weighted imaging
- Gradients map frequency to position and are controlled by bandwidth and FOV

Slices selection and phase encoding

What about slice selection?
Similar relationship between BW and position, but can’t detect or measure

Can’t control pulse bandwidth (and often don’t know unless you ask vendor), but can use thinner slices
- Sharper resolution but also lower SNR
- Thinner slices (~3mm) also better for reconstruction

What about the phase encoding direction?
Phase encoding direction is immune to frequency shifts!

Why?
- Every phase encoded line is acquired at the same time from excitation. At echo time TE, spin phase is constant from line to line.

Distortions from gradient non-linearity

Assumption: G approximately linear across FOV

Reality: Distortion in every encoding direction

Mitigation:
- Reliant on vendor supplied corrections (image warping), activated in sequence settings (2D vs 3D correction)

Expect residual errors away from isocenter:

Thanks!

Contact:
- Ken-Pin Hwang
 - khwang@mdanderson.org
 - kwhang@mdanderson.org

References

- AAPM Task Group 303
- Contemporary image-guided cervical cancer brachytherapy: Consensus imaging recommendations from the Society of Abdominal Radiology and the American Brachytherapy Society
 - [PDF](#)
 - [PDF](#)

- Use of MR for image-guided Cervix Brachytherapy
 - SWAAPM Annual Meeting, April 2022

- MRI Principles & Quality Characteristics
 - AAPM Diagnostic Review Course, July 2022

- Chris Walker, Ping Hou

Image credits:
- 'spin-echo' pulse sequence diagram
 - [Image](#)

- [Image](#)
B₀ assumption violations

- Fat protons have a different chemical environment.
- The local magnetic field is shifted due to this environment.
- Like other B₀ violation assumptions, this chemical shift leads to a shift in the local resonance frequency and therefore distortion.
- Magnitude of in-plane shift of fat and water pixels.

\[\Delta f = B₀ \cdot \Delta x \]

Susceptibility → \(D_f = g \cdot B₀ \cdot D_c \) • tissue • metal

Chemical shift → \(D_f = g \cdot B₀ \cdot D_d \)

Fat protons have a different chemical environment. The local magnetic field is shifted due to this environment. Like other B₀ violations assumptions, this chemical shift leads to a shift in the local resonance frequency and therefore distortion. Magnitude of in-plane shift of fat and water pixels.

\[\Delta x = \frac{\Delta f}{B와 FOV_0} = \frac{\delta x}{\delta f} = \text{BW/pixels} \]

Additional Protocol Options

- No Phase Wrap, Phase Oversampling, Fold-over Suppression, Phase-wrap Suppression
- Oversampling in the phase encode direction to reduce aliasing/wrap-around artifacts
- Highly recommended!

Small FOV techniques (i.e. FOCUS, ZOOMit, UZOOM):
- Techniques that only excite a smaller inner FOV to avoid aliasing artifacts
- Frequently used for DWI imaging in prostate and gynecologic imaging
- Reduces geometric distortion on echo planar imaging sequences

Acceleration techniques:
- Parallel Imaging
- Compressed Sensing
- Partial Fourier

Reconstruction options:
- Deep learning reconstructions are becoming increasingly available
- Increase SNR while maintaining scan time or spatial resolution

Upcoming ABS-SAR “Optional” MRI-guided Brachytherapy Sequences

<table>
<thead>
<tr>
<th>Description</th>
<th>coil</th>
<th>Pulse Sequence</th>
<th>FOV [cm]</th>
<th>Slice Thickness [mm]</th>
<th>Slice Gap [mm]</th>
<th>Matrix: Frequency Encoding</th>
<th>Matrix: Phase Encoding</th>
<th>Analytic Coverage & Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Axial or Axial Oblique T2-weighted</td>
<td>3D</td>
<td>FFE or FRFSE</td>
<td>24 – 26</td>
<td>2 – 5</td>
<td>0</td>
<td>256 – 320</td>
<td>256 – 320</td>
<td>Uterus, cervix, tumor, and applicator</td>
</tr>
<tr>
<td>Coronal or Coronal Oblique T2-weighted</td>
<td>2D</td>
<td>FFE or FRFSE</td>
<td>24 – 26</td>
<td>2 – 5</td>
<td>0</td>
<td>256</td>
<td>192 – 256</td>
<td>Uterus, cervix, tumor, and applicator</td>
</tr>
<tr>
<td>Sagittal T2-weighted</td>
<td>3D</td>
<td>SS</td>
<td>20 – 24</td>
<td>2 – 3</td>
<td>-1 – 0</td>
<td>192</td>
<td>192</td>
<td>Whole applicator; used for imaging positive contrast markers</td>
</tr>
</tbody>
</table>