Dosimetric Concerns of Post-Mastectomy Tissue Expanders during External Beam Radiation Therapy

Seng Boh (Gary) Lim, PhD
Assistant Attending Physicist
Director of Radiation Dosimetry Core

AAPM Annual Meeting July 11, 2022

Disclosure

- Nothing to disclose
Background

- Breast cancer: Surgery and Radiation Therapy extends life expectancy1,2

- Surgical options: Lumpectomy and Mastectomy

- Post-mastectomy:
 - Reconstruction
 - Two-stage technique preferred2
 - Post-mastectomy radiation therapy (PMRT)
 - Make skin tighter and tougher
 - Require tissue expander
 - PMRT Timing3

Tissue Expanders

- Saline-based tissue expander
- Weekly injection
- 6-8 weeks

- Air tissue expander
- Self-administered
- Up to 3 times a day
- 4-6 weeks

Dziemianowicz E et al. JACMP. 2019
MRI Safety

• Concerns
 – Heating
 – Projectile effect
 – Artifacts

• Saline with magnetic injection port
 – MR unsafe
 – Port dislodgement¹

• Air Tissue Expander
 – MR unsafe
 – Stainless steel
 – CO₂ canister
 – Not recommended

AAPM Annual Meeting, July 11, 2022

CT Challenges

AAPM Annual Meeting, July 11, 2022
External Beam Radiation Therapy Consideration

- Radiation dose homogeneity is important
 - Correlated to the outcome
 - Coverage (Chest wall to the skin)
 - OAR (Contralateral breast, heart, lung)

- Techniques
 - Parallel oppose
 - VMAT / IMRT

- Treatment
 - Photon
 - Proton
 - Brachytherapy

Expander Dosimetric Complications

- CT curve
 - 12-bit limit
 - High Z material calibration
 - Inaccurate HU
 - Delineation challenge

- Coverage
 - Affect dose homogeneity
 - Increase uncertainty

- Dose calculation algorithm accuracy*
 - Z, energy, and field size dependent
 - E > 10MV
 - neutron dose may not be included
 - Algorithm

AAPM Annual Meeting, July 11, 2022
Dosimetry - IMP

1. Significant transmission reduction behind the magnet (shadow)
2. Without correction, dose error >20% (6x) and > 10% (15x)
3. Parallel to the beam is significantly worse
4. 15x less attenuation than 6x
5. Average skin dose error: -14% to +1%

Dosimetry - IMP

- Clinical beam dosimetric error
 - Less significant with multiple beams
- Algorithm
 - AAA and CCC tend to overestimate
- Chest wall
 - IMP typically > 1 cm away
 - Not too critical
- Skin
 - Potential underdose
- Saline Cavity
 - Significant dose inhomogeneity
 - Not critical

Dose error (%)

<table>
<thead>
<tr>
<th></th>
<th>AAA¹</th>
<th>CCC²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skin</td>
<td>~7% (0°)</td>
<td>5-10%</td>
</tr>
<tr>
<td>Chest Wall</td>
<td>Not sig</td>
<td>< 1.0%</td>
</tr>
</tbody>
</table>

Air Tissue Expander

- Complex high Z structure

Dosimetry (with 16 bits and O-MAR)

<table>
<thead>
<tr>
<th>OSLD Analysis</th>
<th>6x (VMAT)</th>
<th>15x (Tangent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAA</td>
<td>AXB</td>
<td>AAA</td>
</tr>
<tr>
<td>min</td>
<td>-2.2%</td>
<td>-2.9%</td>
</tr>
<tr>
<td>max</td>
<td>13.8%</td>
<td>11.0%</td>
</tr>
<tr>
<td><DD></td>
<td>4.6%</td>
<td>1.6%</td>
</tr>
</tbody>
</table>

Lim, S.B. et al. JACMP 2000
Some Final Thoughts

- Avoid high Z if possible

- CT curve
 - 16 bits if available
 - Appropriate density correction
 - Metal Artifact Reduction (MAR)
 - imAR (Siemens)
 - O-MAR (Philips)
 - SmartMAR (GE)
 - SEMAR (Toshiba)

- Algorithm
 - With inhomogeneity correction\(^1\)
 - AAA, AXB, CCC
 - Classic algorithms should be avoided\(^2\)
 - AAA and CCC tend to be inferior\(^3,4\) with high Z or low density than AXB or MC

- Evaluate TE
