

CELEBRATING MEDICAL PHYSICS TRANSFORMING HUMAN HEALTH

Integrating Omics in the Era of AI for Better Patient Specific Outcomes

Issam El Naqa, Sarah Mattonen, Lise Wei, Sunan Cui, Rachel Ger

Learning Objectives

- Review concepts of multi-omics
- Discuss role of AI in multi-omics
- Explain How to build robust models of multi-omics using AI
- Show example applications in clinical decision support:
 - Managing and quantifying tumor response
 - Managing and quantifying normal tissue toxicities

- Sarah Mattonen, PhD, Western University
 - Radiomics for supportive care interventions in head and neck cancer
- Lise Wei, PhD, University of Michigan
 - The Effect of Stereotactic Body Radiation Therapy for Hepatocellular Cancer on Regional Hepatic Liver Function
 - Sunan Cui, PhD, Stanford University

•

- Utilizing multi-omics data to improve the prediction of toxicities
- Rachel Ger, PhD, John Hopkins University
 - Challenges in the Omics Landscape

The multi-omics of Oncology

El Naqa et al, PMB, 2017

Data Integration for Modeling Response

- Purpose
 - To enable detection of underlying themes by relating patient-specific 'omics' to outcomes (e.g., treatment response to radiation)
- Common types
 - Concatenation
 - Transformation
 - Modeling

Nature Reviews | Genetics

Modeling Response in Radiotherapy

 Tumor control (TCP)/Normal tissue complication (NTCP) are multi-factorial and depend: radiation dose and patients' genomic (radiogenomics) and imaging (radiomics) characteristics before & during radiotherapy

El Naqa, Methods, 2016

Non-Al Methods: Modeling of Liver Function

<u>AI/ML Methods:</u> Modeling of Lung Cancer Outcomes

A multi-objective Bayesian network (MO-BN) is used to predict multiple radiation outcomes simultaneously from multi-omics data, which provides opportunities of finding appropriate treatment plans to solve the trade-off between competing risks in non-small lung cancer

Luo et al, Med Phys, 2018 (Editor's Choice)

Challenges for Multi-omics in Radiotherapy

www.redjournal.org

EDITORIAL

Radiation Therapy Outcomes Models in the Era of Radiomics and Radiogenomics: Uncertainties and Validation

Issam El Naqa, PhD,* Gaurav Pandey, PhD,[†] Hugo Aerts, PhD,^{‡,§} Jen-Tzung Chien, PhD,^{||,¶} Christian Nicolaj Andreassen, MD, PhD,[#] Andrzej Niemierko, PhD,** and Randall K. Ten Haken, PhD*

Check List for AI/ML in Medical Physics (CLAMP

- Purpose and justification of AI/ML algorithm selection
- **Dataset** characteristics (acquisition, ٠ size, partitioning [3Ts: training, tuning, testing])
- ML methods
 - Optimization, loss function, augmentation, regularization
 - Performance metrics and evaluations (internal, external)
- **Significance** of results
 - Interpretation of ML performance •
 - Clinical translation and actionability ٠

TABLE 1 Checklist for AI in <i>Medical Physics</i> (CLAMP) Indicate whether each section clearly summarizes or describes:	Checkboxes			N'Y
1. Abstract	Yes	No	N/A	
a. Purpose, rationale, novelty or significance				
 Al/ML methods and data type, dataset partitioning into training, validation (tuning), and test sets (include numbers used in training, validation, and test sets) 				
c. Main results, including statistical analyses				
2. Introduction				
a. Purpose and justification of using AI/ML algorithm approach				
b. Contribution(s) of AI/ML to medical physics application				
c. Stage of development (e.g., pilot study, mature study)				
3. Materials				
a. Dataset characteristics including sample size and clinical acquisition sites				
b. Device(s) used for data acquisition (e.g., scanner makes), start-end dates of acquisition (or equivalent means with biotechnology generated data), and any data harmonization, augmentation, and enrichment strategies, or pre-processing are clearly described				
c. For imaging data: image or data acquisition modality, acquisition protocol, or parameter ranges are detailed				
d. For patient data: method to obtain the sample, representativeness of the population for the purpose of the study, IRB approval (or equivalent), and relevant patient demographics plus clinical variables such as prevalence(s) of disease(s) or lesion characteristics				
e. For phantom data: Type of phantom and method for generating phantom data				
f. Data composition appropriateness for AI/ML application				
g. Description of the "ground truth," that is, the reference standard, including the annotation process, level of subjectivity, and uncertainty				
h. Data partitioning into training, validation (tuning), and test sets including any criteria to mitigate bias and justification of sample sizes				
i. Final validation using public dataset or study dataset to be shared/made publicly available (desirable but not required).				
4.1 Methods: Machine learning algorithm				
a. Methodology in sufficient detail to allow replication, including model architecture, hyperparameters, inputs, dimensionality of the input (e.g., 2D or 3D images), pre-processing, output type and definition, and discretization/binning, if any.				
b. Training/optimization method including loss function, regularization approach, data imbalance mitigation process (if needed), measures to minimize overfitting and bias, and ablation studies, if any.				
c. Al/ML software code to be shared/made publicly available (desirable but not required).				
4.2 Methods: Performance and statistics				
 a. Performance metric(s) including any postprocessing (such as scoring criteria, decision threshold, binning) of the AI/ML output. 				
b. Method(s) to estimate the uncertainty (such as 95% confidence intervals) of the performance metric(s).				Issam E
c. Significance of the obtained results compared to the null hypothesis (if applicable) or compared to a suitable benchmark metric.				John M.
d. Subgroup analyses for important subgroups (e.g., by age, lesion size).				tanley H. Be
e. Demonstrative results for the training, validation (tuning), and test sets.				itchell M.G
5. Discussion				Heang-Ping
a. Conclusions as supported by the results.				Karen D
b. Limitations of the study.				Lubomir Ha
 c. Discussion/summary of innovation (algorithm or application), significance (clinical or scientific), and/or contributions to the field of medical physics. 				Dar Berkman S

Quality assurance for AI application in the clinic

212 THE MODERN TECHNICLOCK OF RADIATION ONCOLOG

Acceptance Testing

- To ensure that the ML tool meets all applicable safety and performance standards (prediction) and that it meets contractual specifications
- Manufacturer includes an acceptance test procedure with the ML tool
 - Selection of evaluation endpoint and definition of performance criteria (e.g., AUC);
 - Selection of a benchmark data

Commissioning

- The process whereby the needed tool-specific data/parameters are acquired and operational procedures are defined
- May include:
 - Training data collection
 - Developing procedures
 - User training before first use
- Quality Assurance (QA)
 - Effort to ensure treatments are given accurately, safely and efficiently according to established tests and evaluations
- Continuing Quality Improvement (CQI)
 - Effort that seeks to make treatments and operations better by recognizing current weaknesses in the program, anticipating problems before they happen, streamlining tasks and responding to changes in practice

Table 10.1 Contemporary QA considerations for the current state of machine learning applications							
TYPE OF MACHINE LEARNING APPLICATION	QA CONSIDERATIONS FOR THE CURRENT STATE						
	PERFORMED BY REVIEWED BY	COMMISSIONING	ROUTINE QA	RISK BEING MITIGATED			
ML replaces human tasks: iinear acceler- ator QA	Confirm function- ality with sample QA data (Ritter et al. 2018)	 Evaluate ML against current clinic standards (Niein et al. 2009) Test limits of analytics such as by inserting errors into delivery tests or datasets for analysis, e.g., intentional leaf offsets pres- ent in the measurement result but missing in the delivery file Document listations where the ooftware passes and fails Document situations where results differ by >5% 	 Fraguency: monthly Monitor softmare settings for analysis - Repeat analysis of a subset of the commissioning dataset (e.g., dynamic lead gap) includ- ing one at the limit - Expect identical results unleas the coftware has changed, determine if a new baseline is needed - Evaluate against a subset of the manual analysis for soft- ware update - Review trends 	Confirm that the analysis is performed correctly to avoid the hazards of expectation bias			
ML supplemen- al to human aaka: treat- ment planning	Continn func- tionality with vendor-sup- plied treatment plans Define accept of ML for planning	Evaluate behavior againt appropriate portine of anginal TFS commissioning results (if available) (Frazase et al. 1086) Are clinical goals me?1 is the agreement within 55% for kays metrics, such as mean doos for targets and make doos for targets and make doos for targets and make doos for ateration of the software door for ateration of the software door for advare door advare door for advare door for advare door for advare door advare door for advare door advare doo	 Repeat analysis of a subcet of the commissioning dataset (e.g., dynamic leaf gap) includ- ing one at the limit. Monitor key dosimetric results from ML techniques using Big Data Analytical tools where available by body raits: e.g. atra- dos to a volume (e.g., 1 con) tor OARE (Mayo et al., 2017) Add extra constitiv on key met- rics for the first 5 patients per body ate 	 Monitor for any unintern- investigation of the cellinical prac- tice due to certings in the ML algorithm Maintain eval- uation of plan against MD- provided goals (plan- ning objec- tives) (Evans et al. 2016; Marks et al. 2013) 			

El Naqa, Moran, Ten Haken, The Modern Technology of Radiation Oncology, V4, Van Dyke

Take Home Messages

- Multi-omics offers new opportunities to develop better understanding of radiation oncology processes and for personalizing therapy
- AI techniques (Machine/deep learning) can improve feature selection and statistical learning in multi-omics analytics and outcome modeling
- Main challenges for multi-omics with AI methods
 - Proper integration of various multi-omics data
 - Building robust models with AI methods from multi-omics data
 - Validation and evaluation of AI-based multi-omics models across independent datasets
 - Better interpretation of AI models is still lagging

