

AI AUTO-SEGMENTATION: CLINICAL IMPLEMENTATION CONCERNS AND COMMISSIONING GUIDELINES

Jinzhong Yang, PhD
Department of Radiation Physics
MD Anderson Cancer Center

Disclosure

• None related to this presentation

1

3

Outline

2

- To understand the limitation factors for clinical implementation of auto-segmentation tools
- To understand the concerns in clinical implementation of AI segmentation tools

Learning Objectives

• To learn the proper commissioning procedures of auto-segmentation tools

- What is Al Segmentation?
- What are the concerns in clinical implementation of Al segmentation tools?
- What are the guidelines in commissioning Al segmentation tools?

9

11

Self-configuration including preprocessing, data augmentation, network architecture, training and post-processing Train Train Training production Training procedure Training p

Al Segmentation

- Network training
 - Data curation: a lot of training data may need to be curated for training
 - Data augmentation: to create variations from limited data for network training
- Network architecture
 - Number of layers
 - Type of layers

12

- Hyperparameter settings
- Pre- and post-processing of segmentation

WHAT ARE THE CONCERNS IN CLINICAL IMPLEMENTATION OF AI SEGMENTATION?

Limitation Factors in Clinical Use of Auto-Segmentation

- Poor quality of auto-segmentation results
 - The time needs to review auto-segmentation results
 - The time needs to modify inaccurate contours
- Poor workflow integration
 - Multiple steps to run auto-segmentation
 - Direct access in a treatment planning system
 - The time needs to wait for segmentation results

J Yang, et al. Med. Phys. 45(10), 2018

13

14

Al Segmentation Commissioning Concerns

- Segmentation accuracy
 - Benchmark datasets
 - Inter-institutional variations
 - Evaluation Metrics
- Workflow integration
 - Seamless integration with local clinical practice

Al Segmentation Model

- Vendor supplied model
 - Understand the variations between training data and local institution data
- Vendor supports local model training (or in-house Al segmentation models)
 - Curate local institutional data for model training
 - Perform data augmentation if needed
 - Understand network architecture
 - Understand the impact of hyperparameters in model training

15

Benchmark Datasets

- Datasets with ground-truth contours that can be used for evaluating auto-segmentation tools
- Datasets for different anatomical sites
- Image type of the datasets
- Number of datasets for each anatomical site
- Source of benchmark datasets
 - Public benchmark datasets
 - · Understand the inter-institutional variations
 - Local institutional benchmark datasets
 - Time for data curation

17

Common Evaluation Metrics

· Dice coefficient

18

- · A measure of relative overlap
- Mean surface distance
 - · Measure average distance of two contours in

$$\vec{d}_{avg}(X,Y) = \frac{1}{|X|} \sum_{x \in X} \min_{y \in Y} d(x,y) \qquad d_{avg}(X,Y) = \frac{\vec{d}_{avg}(X,Y) + \vec{d}_{avg}(Y,X)}{2}$$

- Hausdorff distance (95% Hausdorff distance)
 - Measure the 95% distance of all points in one contour to the other in millimeters

$$\vec{d}_{H95}(X,Y) = K_{95} \left(\min_{y \in Y} d(x,y) \right) \quad d_{H95}(X,Y) = \frac{\vec{d}_{H95}(X,Y) + \vec{d}_{H95}(Y,X)}{2}$$

$$K95(\cdot) \text{ is the 95th percentile}$$

Image from wikipedia

Pitfall of Evaluation Metrics

- Understand the meaning of evaluation metrics and their implementation details
- Understand that sensitivity of each evaluation metric to different organs
 - Dice value is more sensitive for small-volume structures than large-volume structures
 - Hausdorff distance is very sensitive to outliers
- Individual quantitative evaluation metrics may not directly relate to human perception

- Observer contouring variability
 - Manual contouring uncertainty could be as large as 2 cm (IAEA Human Health Series No. 31, 2016)
- To account for inter-observer variability, ground-truth can be manually contoured by multiple observers
- Mean score of these observers used as reference score (R)

Account for Inter-Observer Variability

- Perfect measure (P): Dice = 1, MSD/HD95=0
- Normalization of the score (T) for each metric, each structure

- Score = 100; perfect segmentation
- Score = 50; equivalent to average inter-observer reference
- Score =0; below the reference by more than the perfect score above the reference
- Final score is the average of normalized scores of a limetrics structures.
 JiYang, et al. Med. Phys. 45(10), 2018

21

GUIDELINES IN COMMISSIONING AI SEGMENTATION TOOLS

Workflow Integration Consideration

- Consider clinical applications
 - Treatment planning
 - · Online adaptive planning
 - Outcome/toxicity analysis
- Consider integration with application software
 - Easy access the tool from application software, e.g., TPS
 - Easy retrieve segmentation results to application software
- Parameter options for segmentation algorithms

22

Commissioning Guidelines

- Planning step
 - Read vendor supplied documents
 - Understand the AI segmentation tool
 - Support image types
 - Support anatomical sites
 - Does it require model training?
 - Assess the workflow integration with local clinical practice
 - Seamless integration with local treatment planning systems

23

Commissioning Guidelines

- Preparation step
 - Determine the anatomical sites and image types
 - Prepare local institutional benchmark datasets for each anatomical site and image type
 - Determine the number of test images (the more the better)
 - Collect manual contours as ground-truth from multiple experts if possible
 - Perform quality check of the manual contours
 - Choose/Implement quantitative evaluation tool
 - Select metrics to be used for the evaluation
 - Verify the proper functionality of the evaluation tool

Commissioning Guidelines

- Testing and evaluation step
 - Perform segmentation for each image type and anatomical site in a clinical test environment
 - Generate quantitative evaluation metrics
 - Perform subjective evaluation
 - Score the auto-segmented contours by at least two experts in terms of the need for editing
 - Analyze the results to decide the organs/sites/images for clinical use
 - Clearly document the limitations on insufficient accuracy

25

Extended Reading

PART III Clinical Implementation Concerns

Chapter 14 Data Curation Challenges for Artificial Intelligence

Ken Chang, Mishka Gidwani, Jay B. Patel, Matthew D. Li, and
Jayashree Kalpathy-Cramer

